Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
2.
Adv Mater ; 31(10): e1805970, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30637817

ABSTRACT

The metallic interface between two oxide insulators, such as LaAlO3 /SrTiO3 (LAO/STO), provides new opportunities for electronics and spintronics. However, due to the presence of multiple orbital populations, tailoring the interfacial properties such as the ground state and metal-insulator transitions remains challenging. Here, an unforeseen tunability of the phase diagram of LAO/STO is reported by alloying LAO with a ferromagnetic LaMnO3 insulator without forming lattice disorder and at the same time without changing the polarity of the system. By increasing the Mn-doping level, x, of LaAl1- x Mnx O3 /STO (0 ≤ x ≤ 1), the interface undergoes a Lifshitz transition at x = 0.225 across a critical carrier density of nc = 2.8 × 1013 cm-2 , where a peak TSC ≈255 mK of superconducting transition temperature is observed. Moreover, the LaAl1- x Mnx O3 turns ferromagnetic at x ≥ 0.25. Remarkably, at x = 0.3, where the metallic interface is populated by only dxy electrons and just before it becomes insulating, a same device with both signatures of superconductivity and clear anomalous Hall effect (7.6 × 1012 cm-2 < ns ≤ 1.1 × 1013 cm-2 ) is achieved reproducibly. This provides a unique and effective way to tailor oxide interfaces for designing on-demand electronic and spintronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL