Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Am Chem Soc ; 141(16): 6726-6739, 2019 04 24.
Article in English | MEDLINE | ID: mdl-30943023

ABSTRACT

Historically accessed through two-electron, anionic chemistry, ketones, alcohols, and amines are of foundational importance to the practice of organic synthesis. After placing this work in proper historical context, this Article reports the development, full scope, and a mechanistic picture for a strikingly different way of forging such functional groups. Thus, carboxylic acids, once converted to redox-active esters (RAEs), can be utilized as formally nucleophilic coupling partners with other carboxylic derivatives (to produce ketones), imines (to produce benzylic amines), or aldehydes (to produce alcohols). The reactions are uniformly mild, operationally simple, and, in the case of ketone synthesis, broad in scope (including several applications to the simplification of synthetic problems and to parallel synthesis). Finally, an extensive mechanistic study of the ketone synthesis is performed to trace the elementary steps of the catalytic cycle and provide the end-user with a clear and understandable rationale for the selectivity, role of additives, and underlying driving forces involved.


Subject(s)
Alcohols/chemistry , Alcohols/chemical synthesis , Amines/chemistry , Amines/chemical synthesis , Ketones/chemistry , Ketones/chemical synthesis , Chemistry Techniques, Synthetic , Free Radicals/chemistry
2.
Science ; 360(6384): 75-80, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29456201

ABSTRACT

Cross-coupling chemistry is widely applied to carbon-carbon bond formation in the synthesis of medicines, agrochemicals, and other functional materials. Recently, single-electron-induced variants of this reaction class have proven particularly useful in the formation of C(sp2)-C(sp3) linkages, although certain compound classes have remained a challenge. Here, we report the use of sulfones to activate the alkyl coupling partner in nickel-catalyzed radical cross-coupling with aryl zinc reagents. This method's tolerance of fluoroalkyl substituents proved particularly advantageous for the streamlined preparation of pharmaceutically oriented fluorinated scaffolds that previously required multiple steps, toxic reagents, and nonmodular retrosynthetic blueprints. Five specific sulfone reagents facilitate the rapid assembly of a vast set of compounds, many of which contain challenging fluorination patterns.

SELECTION OF CITATIONS
SEARCH DETAIL