Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Biol Chem ; 290(32): 19681-96, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26055709

ABSTRACT

2',5'-Oligoadenylate synthetase (OAS) enzymes and RNase-L constitute a major effector arm of interferon (IFN)-mediated antiviral defense. OAS produces a unique oligonucleotide second messenger, 2',5'-oligoadenylate (2-5A), that binds and activates RNase-L. This pathway is down-regulated by virus- and host-encoded enzymes that degrade 2-5A. Phosphodiesterase 12 (PDE12) was the first cellular 2-5A- degrading enzyme to be purified and described at a molecular level. Inhibition of PDE12 may up-regulate the OAS/RNase-L pathway in response to viral infection resulting in increased resistance to a variety of viral pathogens. We generated a PDE12-null cell line, HeLaΔPDE12, using transcription activator-like effector nuclease-mediated gene inactivation. This cell line has increased 2-5A levels in response to IFN and poly(I-C), a double-stranded RNA mimic compared with the parental cell line. Moreover, HeLaΔPDE12 cells were resistant to viral pathogens, including encephalomyocarditis virus, human rhinovirus, and respiratory syncytial virus. Based on these results, we used DNA-encoded chemical library screening to identify starting points for inhibitor lead optimization. Compounds derived from this effort raise 2-5A levels and exhibit antiviral activity comparable with the effects observed with PDE12 gene inactivation. The crystal structure of PDE12 complexed with an inhibitor was solved providing insights into the structure-activity relationships of inhibitor potency and selectivity.


Subject(s)
2',5'-Oligoadenylate Synthetase/immunology , Antiviral Agents/pharmacology , Endoribonucleases/immunology , Exoribonucleases/chemistry , Immunity, Innate , Small Molecule Libraries/pharmacology , 2',5'-Oligoadenylate Synthetase/genetics , Adenine Nucleotides/immunology , Adenine Nucleotides/metabolism , Antiviral Agents/chemical synthesis , Crystallography, X-Ray , Encephalomyocarditis virus/genetics , Encephalomyocarditis virus/metabolism , Endoribonucleases/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Exoribonucleases/antagonists & inhibitors , Exoribonucleases/genetics , Exoribonucleases/immunology , Gene Expression Regulation , Gene Knockout Techniques , HeLa Cells , Humans , Interferon-alpha/pharmacology , Models, Molecular , Oligoribonucleotides/immunology , Oligoribonucleotides/metabolism , Poly I-C/pharmacology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Respiratory Syncytial Viruses/genetics , Respiratory Syncytial Viruses/metabolism , Rhinovirus/genetics , Rhinovirus/metabolism , Signal Transduction , Small Molecule Libraries/chemical synthesis , Structure-Activity Relationship
2.
J Med Chem ; 59(15): 7299-304, 2016 Aug 11.
Article in English | MEDLINE | ID: mdl-27379833

ABSTRACT

Undecaprenyl pyrophosphate synthase (UppS) is an essential enzyme in bacterial cell wall synthesis. Here we report the discovery of Staphylococcus aureus UppS inhibitors from an Encoded Library Technology screen and demonstrate binding to the hydrophobic substrate site through cocrystallography studies. The use of bacterial strains with regulated uppS expression and inhibitor resistant mutant studies confirmed that the whole cell activity was the result of UppS inhibition, validating UppS as a druggable antibacterial target.


Subject(s)
Alkyl and Aryl Transferases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Pyrazoles/pharmacology , Staphylococcus aureus/drug effects , Alkyl and Aryl Transferases/metabolism , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Staphylococcus aureus/enzymology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL