Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters

Publication year range
1.
Cell ; 153(1): 112-25, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23477864

ABSTRACT

Influenza A viruses are a major cause of mortality. Given the potential for future lethal pandemics, effective drugs are needed for the treatment of severe influenza such as that caused by H5N1 viruses. Using mediator lipidomics and bioactive lipid screen, we report that the omega-3 polyunsaturated fatty acid (PUFA)-derived lipid mediator protectin D1 (PD1) markedly attenuated influenza virus replication via RNA export machinery. Production of PD1 was suppressed during severe influenza and PD1 levels inversely correlated with the pathogenicity of H5N1 viruses. Suppression of PD1 was genetically mapped to 12/15-lipoxygenase activity. Importantly, PD1 treatment improved the survival and pathology of severe influenza in mice, even under conditions where known antiviral drugs fail to protect from death. These results identify the endogenous lipid mediator PD1 as an innate suppressor of influenza virus replication that protects against lethal influenza virus infection.


Subject(s)
Active Transport, Cell Nucleus , Docosahexaenoic Acids/immunology , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H5N1 Subtype/physiology , Orthomyxoviridae Infections/immunology , Virus Replication , Active Transport, Cell Nucleus/drug effects , Animals , Cell Line , Docosahexaenoic Acids/analysis , Docosahexaenoic Acids/pharmacology , Humans , Mice , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , Virus Replication/drug effects
2.
Cell ; 141(1): 142-53, 2010 Apr 02.
Article in English | MEDLINE | ID: mdl-20371351

ABSTRACT

Heart diseases are the most common causes of morbidity and death in humans. Using cardiac-specific RNAi-silencing in Drosophila, we knocked down 7061 evolutionarily conserved genes under conditions of stress. We present a first global roadmap of pathways potentially playing conserved roles in the cardiovascular system. One critical pathway identified was the CCR4-Not complex implicated in transcriptional and posttranscriptional regulatory mechanisms. Silencing of CCR4-Not components in adult Drosophila resulted in myofibrillar disarray and dilated cardiomyopathy. Heterozygous not3 knockout mice showed spontaneous impairment of cardiac contractility and increased susceptibility to heart failure. These heart defects were reversed via inhibition of HDACs, suggesting a mechanistic link to epigenetic chromatin remodeling. In humans, we show that a common NOT3 SNP correlates with altered cardiac QT intervals, a known cause of potentially lethal ventricular tachyarrhythmias. Thus, our functional genome-wide screen in Drosophila can identify candidates that directly translate into conserved mammalian genes involved in heart function.


Subject(s)
Drosophila melanogaster/physiology , Models, Animal , Animals , Cardiomyopathies/genetics , Cardiomyopathies/physiopathology , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Female , Genome-Wide Association Study , Heart/embryology , Heart/physiology , Humans , Male , Mice , Mice, Knockout , Promoter Regions, Genetic , RNA Interference
3.
Genes Cells ; 28(8): 573-584, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37248626

ABSTRACT

Tumor-derived G-CSF is a well-known factor to aggravate disease progression in various types of cancers. In this study, we investigated a role of G-CSF in squamous cell carcinoma (SCC). High expression of G-CSF in the tumor tissues of esophageal SCC (ESCC) patients correlated with poor prognosis. Murine SCC NR-S1M cells produce considerable amount of G-CSF, which expression is correlated with its metastatic potentials. Deletion of G-CSF in NR-S1M cells mitigated tumor growth and metastasis to lymph node and lung of subcutaneous NR-S1M tumors in the mice. Mechanistically, G-CSF enhanced cell proliferation in autocrine manner in vitro, whereas in NR-S1M tumor-bearing mice, accumulation of plasma G-CSF was associated with expansion of peripheral neutrophils, which led to a decreased proportion of CD8+ T cells. Antibody depletion of neutrophils restored the number of CD8+ T cells and modestly suppressed tumor outgrowth, albeit no changes in distant metastasis. We propose that G-CSF produced by NR-S1M cells facilitates tumor progression in mice through bi-functional effects to promote neutrophil recruitment and tumor cell proliferation, which may render poor prognosis to the ESCC patients with high G-CSF expression.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Animals , Mice , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Granulocyte Colony-Stimulating Factor/metabolism , Neutrophil Infiltration , Esophageal Neoplasms/genetics , Carcinoma, Squamous Cell/genetics , Cell Proliferation , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
4.
Genes Dev ; 30(20): 2310-2324, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27807034

ABSTRACT

Transcription factor EBF1 (early B-cell factor 1) regulates early B-cell differentiation by poising or activating lineage-specific genes and repressing genes associated with alternative cell fates. To identify proteins that regulate the diverse functions of EBF1, we used SILAC (stable isotope labeling by amino acids in cell culture)-based mass spectrometry of proteins associated with endogenous EBF1 in pro-B cells. This analysis identified most components of the multifunctional CCR4-NOT complex, which regulates transcription and mRNA degradation. CNOT3 interacts with EBF1, and we identified histidine 240 in EBF1 as a critical residue for this interaction. Complementation of Ebf1-/- progenitors with EBF1H240A revealed a partial block of pro-B-cell differentiation and altered expression of specific EBF1 target genes that show either reduced transcription or increased mRNA stability. Most deregulated EBF1 target genes show normal occupancy by EBF1H240A, but we also detected genes with altered occupancy, suggesting that the CCR4-NOT complex affects multiple activities of EBF1. Mice with conditional Cnot3 inactivation recapitulate the block of early B-cell differentiation, which we found to be associated with an impaired autoregulation of Ebf1 and reduced expression of pre-B-cell receptor components. Thus, the interaction of the CCR4-NOT complex with EBF1 diversifies the function of EBF1 in a context-dependent manner and may coordinate transcriptional and post-transcriptional gene regulation.


Subject(s)
B-Lymphocytes/physiology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation/genetics , Homeodomain Proteins/metabolism , Lymphopoiesis/genetics , Nuclear Proteins/metabolism , RNA Stability/genetics , Transcription Factors/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation/genetics , Gene Silencing , HEK293 Cells , Homeodomain Proteins/genetics , Humans , Mice , Molecular Chaperones/genetics , Mutation , Nuclear Proteins/genetics , Protein Binding , Transcription Factors/genetics , Transgenes
5.
Biochem Biophys Res Commun ; 647: 72-79, 2023 03 05.
Article in English | MEDLINE | ID: mdl-36731336

ABSTRACT

Apelin (APL), an endogenous ligand for APJ, has been reported to be upregulated in a murine model of acute colitis induced by sodium dextran sulfate, as well as inflammatory bowel diseases (IBD) in humans. However, the mechanisms and functions of APL/APJ axis in the pathogenesis of IBD are unclear. We herein analyzed CD4+ T cells to determine the functions of APL in a murine model of chronic colitis induced in Rag deficient mice (Rag-/-). In colonic tissues of wild-type mice (WT), we found that APL was expressed especially in the lamina propria lymphocytes, where CD4+ T cells are dominant, rather than the epithelial cells. Unexpectedly, the APL expression was rather downregulated in the colonic tissue of the chronic colitis group compared to the control groups (Rag-/- before colitis induction and WT). The APL expression was downregulated when naïve T cells were differentiated into effecter T cells. A lack of APL resulted in decreased naïve T cells and increased effecter T cells in secondary lymphoid organs. A synthetic APL peptide, [Pyr1]-APL-13, increased IL-10 and decreased IFN-γ productions by effecter T cells. Administration of [Pyr1]-APL-13 improved survival rate in association with lessened colitis severity and decreased pro-inflammatory cytokine production. This is the first report showing immunological function of APL specifically on T cells, and these results indicate that APL/APJ axis may be a novel therapeutic target for IBD.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Mice , Humans , Animals , T-Lymphocytes/metabolism , Apelin/metabolism , Disease Models, Animal , Colitis/pathology , Inflammatory Bowel Diseases/metabolism , Dextran Sulfate , Mice, Inbred C57BL , CD4-Positive T-Lymphocytes
6.
Cell ; 133(2): 235-49, 2008 Apr 18.
Article in English | MEDLINE | ID: mdl-18423196

ABSTRACT

Multiple lung pathogens such as chemical agents, H5N1 avian flu, or SARS cause high lethality due to acute respiratory distress syndrome. Here we report that Toll-like receptor 4 (TLR4) mutant mice display natural resistance to acid-induced acute lung injury (ALI). We show that TLR4-TRIF-TRAF6 signaling is a key disease pathway that controls the severity of ALI. The oxidized phospholipid (OxPL) OxPAPC was identified to induce lung injury and cytokine production by lung macrophages via TLR4-TRIF. We observed OxPL production in the lungs of humans and animals infected with SARS, Anthrax, or H5N1. Pulmonary challenge with an inactivated H5N1 avian influenza virus rapidly induces ALI and OxPL formation in mice. Loss of TLR4 or TRIF expression protects mice from H5N1-induced ALI. Moreover, deletion of ncf1, which controls ROS production, improves the severity of H5N1-mediated ALI. Our data identify oxidative stress and innate immunity as key lung injury pathways that control the severity of ALI.


Subject(s)
Oxidative Stress , Respiratory Distress Syndrome/metabolism , Toll-Like Receptor 4/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Humans , Influenza, Human/metabolism , Interleukin-6/metabolism , Lung , Mice , Mice, Inbred C57BL , NADPH Oxidases/metabolism , NF-kappa B/metabolism , Orthomyxoviridae Infections/metabolism , Phospholipids/metabolism , Severe Acute Respiratory Syndrome/metabolism , Signal Transduction
7.
Genes Cells ; 25(8): 547-561, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32449584

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is one of the most fatal types of malignant tumors worldwide. Epitranscriptome, such as N6 -methyladenosine (m6 A) of mRNA, is an abundant post-transcriptional mRNA modification and has been recently implicated to play roles in several cancers, whereas the significance of m6 A modifications is virtually unknown in ESCC. Analysis of tissue microarray of the tumors in 177 ESCC patients showed that higher expression of m6 A demethylase ALKBH5 correlated with poor prognosis and that ALKBH5 was an independent prognostic factor of the survival of patients. There was no correlation between the other demethylase FTO and prognosis. siRNA knockdown of ALKBH5 but not FTO significantly suppressed proliferation and migration of human ESCC cells. ALKBH5 knockdown delayed progression of cell cycle and accumulated the cells to G0/G1 phase. Mechanistically, expression of CDKN1A (p21) was significantly up-regulated in ALKBH5-depleted cells, and m6 A modification and stability of CDKN1A mRNA were increased by ALKBH5 knockdown. Furthermore, depletion of ALKBH5 substantially suppressed tumor growth of ESCC cells subcutaneously transplanted in BALB/c nude mice. Collectively, we identify ALKBH5 as the first m6 A demethylase that accelerates cell cycle progression and promotes cell proliferation of ESCC cells, which is associated with poor prognosis of ESCC patients.


Subject(s)
AlkB Homolog 5, RNA Demethylase/metabolism , Esophageal Squamous Cell Carcinoma/genetics , Adenosine/analogs & derivatives , Adenosine/genetics , Adenosine/metabolism , Adult , Aged , AlkB Enzymes/metabolism , AlkB Homolog 5, RNA Demethylase/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Animals , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Disease Progression , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Female , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Prognosis , RNA Stability/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
8.
FASEB J ; 34(9): 12492-12501, 2020 09.
Article in English | MEDLINE | ID: mdl-32721046

ABSTRACT

Lipid mediators play important roles in regulating inflammatory responses and tissue homeostasis. Since 12/15-lipoxygenase (12/15-LOX)-derived lipid mediators such as lipoxin A4 (LXA4 ) and protectin D1 (PD1) protect against corneal epithelial cell damage, the major cell types that express 12/15-LOX and contribute to the corneal wound healing process are of particular interest. Here, we found that eosinophils were the major cell type expressing 12/15-LOX during the corneal wound healing process. Eosinophils were recruited into the conjunctiva after corneal epithelium wounding, and eosinophil-deficient and/or eosinophil-specific 12/15-LOX knockout mice showed delayed corneal wound healing compared with wild-type mice. Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based mediator lipidomics revealed that a series of 12/15-LOX-derived mediators were significantly decreased in eosinophil-deficient mice and topical application of 17-hydroxydocosahexaenoic acid (17-HDoHE), a major 12/15-LOX-derived product, restored the phenotype. These results indicate that 12/15-LOX-expressing eosinophils, by locally producing pro-resolving mediators, significantly contribute to the corneal wound healing process in the eye.


Subject(s)
Arachidonate 12-Lipoxygenase/physiology , Arachidonate 15-Lipoxygenase/physiology , Corneal Injuries/pathology , Eosinophils/cytology , Wound Healing , Animals , Cornea/pathology , Eosinophils/enzymology , Mice , Mice, Inbred C57BL , Mice, Knockout
9.
RNA Biol ; 17(3): 403-416, 2020 03.
Article in English | MEDLINE | ID: mdl-31924127

ABSTRACT

Shortening of mRNA poly(A) tails (deadenylation) to trigger their decay is mediated mainly by the CCR4-NOT deadenylase complex. While four catalytic subunits (CNOT6, 6L 7, and 8) have been identified in the mammalian CCR4-NOT complex, their individual biological roles are not fully understood. In this study, we addressed the contribution of CNOT7/8 to viability of primary mouse embryonic fibroblasts (MEFs). We found that MEFs lacking CNOT7/8 expression [Cnot7/8-double knockout (dKO) MEFs] undergo cell death, whereas MEFs lacking CNOT6/6L expression (Cnot6/6l-dKO MEFs) remain viable. Co-immunoprecipitation analyses showed that CNOT6/6L are also absent from the CCR4-NOT complex in Cnot7/8-dKO MEFs. In contrast, either CNOT7 or CNOT8 still interacts with other subunits in the CCR4-NOT complex in Cnot6/6l-dKO MEFs. Exogenous expression of a CNOT7 mutant lacking catalytic activity in Cnot7/8-dKO MEFs cannot recover cell viability, even though CNOT6/6L exists to some extent in the CCR4-NOT complex, confirming that CNOT7/8 is essential for viability. Bulk poly(A) tail analysis revealed that mRNAs with longer poly(A) tails are more numerous in Cnot7/8-dKO MEFs than in Cnot6/6l-dKO MEFs. Consistent with elongated poly(A) tails, more mRNAs are upregulated and stabilized in Cnot7/8-dKO MEFs than in Cnot6/6l-dKO MEFs. Importantly, Cnot6/6l-dKO mice are viable and grow normally to adulthood. Taken together, the CNOT7/8 catalytic subunits are essential for deadenylation, which is necessary to maintain cell viability, whereas CNOT6/6L are not.


Subject(s)
Exoribonucleases/metabolism , RNA, Messenger/metabolism , Receptors, CCR4/metabolism , Repressor Proteins/metabolism , Animals , Cell Survival/genetics , Exoribonucleases/genetics , Female , Fibroblasts/cytology , Fibroblasts/physiology , Male , Mice, Knockout , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Poly A/genetics , Poly A/metabolism , Protein Subunits , RNA Stability , RNA, Messenger/genetics , Receptors, CCR4/genetics , Repressor Proteins/genetics
10.
Chembiochem ; 20(12): 1563-1568, 2019 06 14.
Article in English | MEDLINE | ID: mdl-30734978

ABSTRACT

Malformin A1 (MA1) is a fungus-produced cyclic pentapeptide. MA1 exhibits teratogenicity to plants, fibrinolysis-enhancing activity, and cytotoxicity to mammalian cells. To clarify the cytotoxic mechanism of MA1, we screened for the genes involved in the cytotoxicity of MA1 in monocytoid U937 cells by using a CRISPR/Cas9-based genome-wide knockout library. Screening was performed by positive selection for cells that were resistant to MA1 treatment, and single guide RNAs (sgRNAs) integrated into MA1-resistant cells were analyzed by high-throughput sequencing. As a result of the evaluation of sgRNAs that were enriched in MA1-resistant cells, SQLE, which encodes squalene epoxidase, was identified as a candidate gene. SQLE-depleted U937 cells were viable in the presence of MA1, and squalene epoxidase inhibitor conferred MA1 resistance to wild-type cells. These results indicate that squalene epoxidase is implicated in the cytotoxicity of MA1. This finding represents a new insight into applications of MA1 for treating ischemic diseases.


Subject(s)
Peptides, Cyclic/pharmacology , Squalene Monooxygenase/genetics , Aspergillus niger/metabolism , CRISPR-Cas Systems , Cell Survival/drug effects , Cell Survival/genetics , Humans , RNA, Guide, Kinetoplastida/genetics , Squalene Monooxygenase/metabolism , U937 Cells
11.
Int J Mol Sci ; 20(2)2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30634441

ABSTRACT

Apelin is an inotropic and cardioprotective peptide that exhibits beneficial effects through activation of the APJ receptor in the pathology of cardiovascular diseases. Apelin induces the expression of angiotensin-converting enzyme 2 (ACE2) in failing hearts, thereby improving heart function in an angiotensin 1⁻7-dependent manner. Whether apelin antagonizes the over-activation of the renin⁻angiotensin system in the heart remains elusive. In this study we show that the detrimental effects of angiotensin II (Ang II) were exacerbated in the hearts of aged apelin-gene-deficient mice. Ang II-mediated cardiac dysfunction and hypertrophy were augmented in apelin knockout mice. The loss of apelin increased the ratio of angiotensin-converting enzyme (ACE) to ACE2 expression in the Ang II-stressed hearts, and Ang II-induced cardiac fibrosis was markedly enhanced in apelin knockout mice. mRNA expression of pro-fibrotic genes, such as transforming growth-factor beta (TGF-ß) signaling, were significantly upregulated in apelin knockout hearts. Consistently, treatment with the ACE-inhibitor Captopril decreased cardiac contractility in apelin knockout mice. In vitro, apelin ameliorated Ang II-induced TGF-ß expression in primary cardiomyocytes, accompanied with reduced hypertrophy. These results provide direct evidence that endogenous apelin plays a crucial role in suppressing Ang II-induced cardiac dysfunction and pathological remodeling.


Subject(s)
Angiotensin II/metabolism , Apelin/deficiency , Ventricular Dysfunction/genetics , Ventricular Remodeling/genetics , Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Biopsy , Cardiomegaly/genetics , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cardiomegaly/physiopathology , Disease Models, Animal , Echocardiography , Fibrosis , Heart Failure/genetics , Heart Failure/metabolism , Heart Failure/pathology , Heart Failure/physiopathology , Hypertension/genetics , Hypertension/metabolism , Hypertension/pathology , Hypertension/physiopathology , Mice , Mice, Knockout , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Peptidyl-Dipeptidase A/metabolism
12.
Int J Mol Sci ; 20(21)2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31652943

ABSTRACT

Shortening of poly(A) tails triggers mRNA degradation; hence, mRNA deadenylation regulates many biological events. In the present study, we generated mice lacking the Cnot1 gene, which encodes an essential scaffold subunit of the CCR4-NOT deadenylase complex in adipose tissues (Cnot1-AKO mice) and we examined the role of CCR4-NOT in adipocyte function. Cnot1-AKO mice showed reduced masses of white adipose tissue (WAT) and brown adipose tissue (BAT), indicating abnormal organization and function of those tissues. Indeed, Cnot1-AKO mice showed hyperinsulinemia, hyperglycemia, insulin resistance, and glucose intolerance and they could not maintain a normal body temperature during cold exposure. Muscle-like fibrous material appeared in both WAT and BAT of Cnot1-AKO mice, suggesting the acquisition of non-adipose tissue characteristics. Gene expression analysis using RNA-sequencing (RNA-seq) showed that the levels of adipose tissue-related mRNAs, including those of metabolic genes, decreased, whereas the levels of inflammatory response-related mRNAs increased. These data suggest that the CCR4-NOT complex ensures proper adipose tissue function by maintaining adipocyte-specific mRNAs at appropriate levels and by simultaneously suppressing mRNAs that would impair adipocyte function if overexpressed.


Subject(s)
Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Transcription Factors/genetics , Adipocytes/cytology , Adipocytes/metabolism , Adipose Tissue, Brown/pathology , Adipose Tissue, White/pathology , Animals , Body Temperature , Cells, Cultured , Gene Expression Regulation , Hyperglycemia/etiology , Hyperglycemia/metabolism , Hyperinsulinism/etiology , Hyperinsulinism/metabolism , Lipid Metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Messenger/metabolism , Transcription Factors/deficiency
13.
Nature ; 487(7408): 477-81, 2012 Jul 25.
Article in English | MEDLINE | ID: mdl-22837003

ABSTRACT

Malnutrition affects up to one billion people in the world and is a major cause of mortality. In many cases, malnutrition is associated with diarrhoea and intestinal inflammation, further contributing to morbidity and death. The mechanisms by which unbalanced dietary nutrients affect intestinal homeostasis are largely unknown. Here we report that deficiency in murine angiotensin I converting enzyme (peptidyl-dipeptidase A) 2 (Ace2), which encodes a key regulatory enzyme of the renin-angiotensin system (RAS), results in highly increased susceptibility to intestinal inflammation induced by epithelial damage. The RAS is known to be involved in acute lung failure, cardiovascular functions and SARS infections. Mechanistically, ACE2 has a RAS-independent function, regulating intestinal amino acid homeostasis, expression of antimicrobial peptides, and the ecology of the gut microbiome. Transplantation of the altered microbiota from Ace2 mutant mice into germ-free wild-type hosts was able to transmit the increased propensity to develop severe colitis. ACE2-dependent changes in epithelial immunity and the gut microbiota can be directly regulated by the dietary amino acid tryptophan. Our results identify ACE2 as a key regulator of dietary amino acid homeostasis, innate immunity, gut microbial ecology, and transmissible susceptibility to colitis. These results provide a molecular explanation for how amino acid malnutrition can cause intestinal inflammation and diarrhoea.


Subject(s)
Colitis/etiology , Colitis/microbiology , Intestines/microbiology , Malnutrition/complications , Metagenome , Peptidyl-Dipeptidase A/metabolism , Tryptophan/metabolism , Angiotensin-Converting Enzyme 2 , Animals , Biocatalysis , Colitis/drug therapy , Colitis/pathology , Dextran Sulfate , Diarrhea/complications , Dietary Proteins/metabolism , Dietary Proteins/pharmacology , Female , Gene Deletion , Genetic Predisposition to Disease , Germ-Free Life , Homeostasis , Immunity, Innate , Intestines/pathology , Male , Malnutrition/metabolism , Mice , Models, Biological , Niacinamide/metabolism , Niacinamide/pharmacology , Niacinamide/therapeutic use , Peptidyl-Dipeptidase A/deficiency , Peptidyl-Dipeptidase A/genetics , Renin-Angiotensin System/physiology , TOR Serine-Threonine Kinases/metabolism , Trinitrobenzenesulfonic Acid , Tryptophan/pharmacology , Tryptophan/therapeutic use
14.
Am J Respir Cell Mol Biol ; 56(2): 179-190, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27668315

ABSTRACT

For acute respiratory distress syndrome (ARDS), mechanical ventilation (MV) is a life-saving intervention without alternative; however, MV can cause ventilator-induced lung injury. Reactive oxygen species (ROS) play important roles in the pathogenesis of both ARDS and ventilator-induced lung injury. Lecithinized superoxide dismutase (PC-SOD) overcomes the limitations of superoxide dismutase such as low tissue affinity and low stability in plasma. In this study, we examined the effect of PC-SOD on tissue injury, edema, and inflammation in the lung and other organs of mice subjected to cecal ligation and puncture (CLP), LPS administration, or MV. The severity of the lung injury was assessed on the basis of vascular permeability, histopathologic evaluation, and lung mechanics. Intravenous PC-SOD administration (the first administered just before CLP) increased the survival rate and decreased vascular permeability in mice subjected to CLP. PC-SOD, but not dexamethasone or sivelestat sodium hydrate (sivelestat), suppressed CLP-induced kidney injury and systemic inflammation. PC-SOD also suppressed vascular permeability, tissue injury, and inflammation in the lung induced by LPS administration. Moreover, PC-SOD, but not dexamethasone or sivelestat, suppressed vascular permeability, edema, tissue injury, and mechanical alterations in the lung induced by MV. In vivo imaging analysis of ROS revealed that CLP, LPS administration, and MV increased the level of ROS and that this increase was suppressed by PC-SOD. The results of this study thus suggest that, on the basis of its ROS-reducing properties, intravenous administration of PC-SOD may be beneficial for patients at high risk of developing ARDS.


Subject(s)
Phosphatidylcholines/therapeutic use , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/prevention & control , Superoxide Dismutase/therapeutic use , Animals , Cecum/pathology , Dexamethasone/pharmacology , Disease Models, Animal , Glycine/analogs & derivatives , Glycine/pharmacology , Glycine/therapeutic use , Ligation , Lipopolysaccharides , Lung Injury/complications , Lung Injury/drug therapy , Lung Injury/pathology , Male , Mice , Mice, Inbred ICR , Multiple Organ Failure/complications , Multiple Organ Failure/pathology , Phosphatidylcholines/pharmacology , Punctures , Reactive Oxygen Species/metabolism , Respiration, Artificial , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Superoxide Dismutase/pharmacology
15.
Bioorg Med Chem Lett ; 26(21): 5267-5271, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27680590

ABSTRACT

The formation of blood clots in blood vessels causes severe ischemic diseases such as cerebral infarction and myocardial infarction. While searching for microbial products that increase fibrinolytic activity using an in vitro fibrin degradation assay, we found malformin A1, a disulfide form of cyclo(-d-Cys-d-Cys-l-Val-d-Leu-l-Ile-), as an active compound. In this study, we synthesized malformin derivatives using a solid-phase peptide synthesis method and evaluated their fibrinolytic activity and cytotoxicity. Reduction of the disulfide bond and linearization of the cyclic peptide frame decreased the pro-fibrinolytic activity. Substitution of a branched-chain amino acid with lysine resulted in loss of activity. However, protection of the amino group in the lysine derivatives by the tert-butoxycarbonyl (Boc) group rescued the inactivity. Furthermore, the phenylalanine derivatives also exhibited a similar pro-fibrinolytic effect compared to malformin A1. These results suggest that the disulfide bond, the cyclic peptide frame, and the bulky hydrophobic side chains play a crucial role in the pro-fibrinolytic activity of malformin. The effective dose of the active derivatives for the in vitro fibrin degradation showed similar ranges (1-5µM), while the order of cytotoxic potency for the active derivatives was as follows: Phe-derivatives>BocLys-derivatives>malformin A1>reduced form. These results showed no correlation between pro-fibrinolytic activity and cytotoxicity, suggesting the possibility of the synthesis for non-toxic malformin derivatives possessing the activity.


Subject(s)
Fibrinolysis/drug effects , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Humans , Inhibitory Concentration 50 , Spectrum Analysis/methods , Structure-Activity Relationship , U937 Cells
16.
Part Fibre Toxicol ; 12: 4, 2015 Mar 07.
Article in English | MEDLINE | ID: mdl-25890286

ABSTRACT

BACKGROUND: Nanoparticles have become a key technology in multiple industries. However, there are growing reports of the toxicity of nanomaterials to humans. In particular, nanomaterials have been linked to lung diseases. The molecular mechanisms of nanoparticle toxicity are largely unexplored. METHODS: Acute lung injury was induced in wild-type mice and angiotensin-coverting enzyme 2 (ACE2) knockout mice by the intratracheal instillation of cationic polyamidoamine dendrimer (PAMAM) nanoparticles. For rescue experiments, losartan (15 mg/kg in PBS) was injected intraperitoneally 30 min before nanoparticle administration. RESULTS: Some PAMAM nanoparticles, but not anionic PAMAM nanoparticles or carbon nanotubes, triggered acute lung failure in mice. Mechanistically, cationic nanoparticles can directly bind ACE2, decrease its activity and down-regulate its expression level in lung tissue, resulting in deregulation of the renin-angiotensin system. Gene inactivation of Ace2 can exacerbate lung injury. Importantly, the administration of losartan, which is an angiotensin II type I receptor antagonist, can ameliorate PAMAM nanoparticle-induced lung injury. CONCLUSIONS: Our data provide molecular insight into PAMAM nanoparticle-induced lung injury and suggest potential therapeutic and screening strategies to address the safety of nanomaterials.


Subject(s)
Acute Lung Injury/chemically induced , Dendrimers/toxicity , Nanoparticles/toxicity , Peptidyl-Dipeptidase A/metabolism , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Cations , Dendrimers/administration & dosage , Dendrimers/chemistry , Down-Regulation , Instillation, Drug , Losartan/pharmacology , Mice, Inbred C57BL , Mice, Knockout , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Peptidyl-Dipeptidase A/genetics , Protein Binding , Survival Analysis
17.
Am J Respir Crit Care Med ; 187(1): 65-77, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23144331

ABSTRACT

RATIONALE: Patients who developed acute respiratory distress syndrome (ARDS) after infection with severe respiratory viruses (e.g., severe acute respiratory syndrome-coronavirus, H5N1 avian influenza virus), exhibited unusually high levels of CXCL10, which belongs to the non-ELR (glutamic-leucine-arginine) CXC chemokine superfamily. CXCL10 may not be a bystander to the severe virus infection but may directly contribute to the pathogenesis of neutrophil-mediated, excessive pulmonary inflammation. OBJECTIVES: We investigated the contribution of CXCL10 and its receptor CXCR3 axis to the pathogenesis of ARDS with nonviral and viral origins. METHODS: We induced nonviral ARDS by acid aspiration and viral ARDS by intratracheal influenza virus infection in wild-type mice and mice deficient in CXCL10, CXCR3, IFNAR1 (IFN-α/ß receptor 1), or TIR domain-containing adaptor inducing IFN-ß (TRIF). MEASUREMENTS AND MAIN RESULTS: We found that the mice lacking CXCL10 or CXCR3 demonstrated improved severity and survival of nonviral and viral ARDS, whereas mice that lack IFNAR1 did not control the severity of ARDS in vivo. The increased levels of CXCL10 in lungs with ARDS originate to a large extent from infiltrated pulmonary neutrophils, which express a unique CXCR3 receptor via TRIF. CXCL10-CXCR3 acts in an autocrine fashion on the oxidative burst and chemotaxis in the inflamed neutrophils, leading to fulminant pulmonary inflammation. CONCLUSIONS: CXCL10-CXCR3 signaling appears to be a critical factor for the exacerbation of the pathology of ARDS. Thus, the CXCL10-CXCR3 axis could represent a prime therapeutic target in the treatment of the acute phase of ARDS of nonviral and viral origins.


Subject(s)
Chemokine CXCL10/physiology , Lung Injury/physiopathology , Neutrophils/physiology , Orthomyxoviridae Infections/physiopathology , Receptors, CXCR3/physiology , Respiratory Distress Syndrome/physiopathology , Aged , Aged, 80 and over , Animals , Chemokine CXCL10/drug effects , Disease Models, Animal , Disease Progression , Humans , Influenza A Virus, H5N1 Subtype , Lung Injury/immunology , Lung Injury/virology , Male , Mice , Mice, Inbred Strains , Middle Aged , Neutrophils/immunology , Orthomyxoviridae Infections/immunology , Protein Array Analysis , Rats , Rats, Sprague-Dawley , Receptors, CXCR3/drug effects , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/virology
18.
Nat Struct Mol Biol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773334

ABSTRACT

Eukaryotic translation initiation factor (eIF)4A-a DEAD-box RNA-binding protein-plays an essential role in translation initiation. Recent reports have suggested helicase-dependent and helicase-independent functions for eIF4A, but the multifaceted roles of eIF4A have not been fully explored. Here we show that eIF4A1 enhances translational repression during the inhibition of mechanistic target of rapamycin complex 1 (mTORC1), an essential kinase complex controlling cell proliferation. RNA pulldown followed by sequencing revealed that eIF4A1 preferentially binds to mRNAs containing terminal oligopyrimidine (TOP) motifs, whose translation is rapidly repressed upon mTORC1 inhibition. This selective interaction depends on a La-related RNA-binding protein, LARP1. Ribosome profiling revealed that deletion of EIF4A1 attenuated the translational repression of TOP mRNAs upon mTORC1 inactivation. Moreover, eIF4A1 increases the interaction between TOP mRNAs and LARP1 and, thus, ensures stronger translational repression upon mTORC1 inhibition. Our data show the multimodality of eIF4A1 in modulating protein synthesis through an inhibitory binding partner and provide a unique example of the repressive role of a universal translational activator.

19.
J Exp Clin Cancer Res ; 43(1): 138, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38715057

ABSTRACT

BACKGROUND: Although immune checkpoint blockade (ICB) therapy has proven to be extremely effective at managing certain cancers, its efficacy in treating pancreatic ductal adenocarcinoma (PDAC) has been limited. Therefore, enhancing the effect of ICB could improve the prognosis of PDAC. In this study, we focused on the histamine receptor H1 (HRH1) and investigated its impact on ICB therapy for PDAC. METHODS: We assessed HRH1 expression in pancreatic cancer cell (PCC) specimens from PDAC patients through public data analysis and immunohistochemical (IHC) staining. The impact of HRH1 in PCCs was evaluated using HRH1 antagonists and small hairpin RNA (shRNA). Techniques including Western blot, flow cytometry, quantitative reverse transcription polymerase chain reaction (RT-PCR), and microarray analyses were performed to identify the relationships between HRH1 and major histocompatibility complex class I (MHC-I) expression in cancer cells. We combined HRH1 antagonism or knockdown with anti-programmed death receptor 1 (αPD-1) therapy in orthotopic models, employing IHC, immunofluorescence, and hematoxylin and eosin staining for assessment. RESULTS: HRH1 expression in cancer cells was negatively correlated with HLA-ABC expression, CD8+ T cells, and cytotoxic CD8+ T cells. Our findings indicate that HRH1 blockade upregulates MHC-I expression in PCCs via cholesterol biosynthesis signaling. In the orthotopic model, the combined inhibition of HRH1 and αPD-1 blockade enhanced cytotoxic CD8+ T cell penetration and efficacy, overcoming resistance to ICB therapy. CONCLUSIONS: HRH1 plays an immunosuppressive role in cancer cells. Consequently, HRH1 intervention may be a promising method to amplify the responsiveness of PDAC to immunotherapy.


Subject(s)
Immune Checkpoint Inhibitors , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Mice , Animals , Receptors, Histamine H1/metabolism , Receptors, Histamine H1/genetics , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/genetics , Cell Line, Tumor , Female , Histamine H1 Antagonists/pharmacology , Histamine H1 Antagonists/therapeutic use , Male
20.
Circ J ; 77(2): 301-8, 2013.
Article in English | MEDLINE | ID: mdl-23328447

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is a negative regulator of the renin-angiotensin system, and functions as the key SARS coronavirus receptor and stabilizer of neutral amino acid transporters. ACE2 catalyzes the conversion of angiotensin II to angiotensin 1-7, thereby counterbalancing ACE activity. Accumulating evidence indicates that the enzymatic activity of ACE2 has a protective role in cardiovascular diseases. Loss of ACE2 can be detrimental, as it leads to functional deterioration of the heart and progression of cardiac, renal, and vascular pathologies. Recombinant soluble human ACE2 protein has been demonstrated to exhibit beneficial effects in various animal models, including cardiovascular diseases. ACE2 is a multifunctional enzyme and thus potentially acts on other vasoactive peptides, such as Apelin, a vital regulator of blood pressure and myocardium contractility. In addition, ACE2 is structurally a chimeric protein that has emerged from the duplication of 2 genes: homology with ACE at the carboxypeptidase domain and homology with Collectrin in the transmembrane C-terminal domain. ACE2 has been implicated in the pathology of Hartnup's disease, a disorder of amino acid homeostasis, and, via its function in amino acid transport, it has been recently revealed that ACE2 controls intestinal inflammation and diarrhea, thus regulating the gut microbiome. This review summarizes and discusses the structure and multiple functions of ACE2 and the relevance of this key enzyme in disease pathogenesis.


Subject(s)
Cardiovascular Diseases/enzymology , Cardiovascular Diseases/physiopathology , Peptidyl-Dipeptidase A/physiology , Angiotensin-Converting Enzyme 2 , Animals , Humans , Mice , Mice, Knockout , Peptidyl-Dipeptidase A/chemistry , Protein Structure, Tertiary/physiology
SELECTION OF CITATIONS
SEARCH DETAIL