Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Pharmacogenomics J ; 24(2): 6, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438359

ABSTRACT

The objective of this study was to discover clinical and pharmacogenetic factors associated with bevacizumab-related gastrointestinal hemorrhage in Cancer and Leukemia Group B (Alliance) 90401. Patients with metastatic castration-resistant prostate cancer received docetaxel and prednisone ± bevacizumab. Patients were genotyped using Illumina HumanHap610-Quad and assessed using cause-specific risk for association between single nucleotide polymorphisms (SNPs) and gastrointestinal hemorrhage. In 1008 patients, grade 2 or higher gastrointestinal hemorrhage occurred in 9.5% and 3.8% of bevacizumab (n = 503) and placebo (n = 505) treated patients, respectively. Bevacizumab (P < 0.001) and age (P = 0.002) were associated with gastrointestinal hemorrhage. In 616 genetically estimated Europeans (n = 314 bevacizumab and n = 302 placebo treated patients), grade 2 or higher gastrointestinal hemorrhage occurred in 9.6% and 2.0% of patients, respectively. One SNP (rs1478947; HR 6.26; 95% CI 3.19-12.28; P = 9.40 × 10-8) surpassed Bonferroni-corrected significance. Grade 2 or higher gastrointestinal hemorrhage rate was 33.3% and 6.2% in bevacizumab-treated patients with the AA/AG and GG genotypes, versus 2.9% and 1.9% in the placebo arm, respectively. Prospective validation of these findings and functional analyses are needed to better understand the genetic contribution to treatment-related gastrointestinal hemorrhage.


Subject(s)
Pharmacogenetics , Prostatic Neoplasms , Male , Humans , Bevacizumab/adverse effects , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Gastrointestinal Hemorrhage/chemically induced , Gastrointestinal Hemorrhage/genetics , Risk Factors
2.
Nat Comput Sci ; 3(5): 403-417, 2023 May.
Article in English | MEDLINE | ID: mdl-38177845

ABSTRACT

Human diseases are traditionally studied as singular, independent entities, limiting researchers' capacity to view human illnesses as dependent states in a complex, homeostatic system. Here, using time-stamped clinical records of over 151 million unique Americans, we construct a disease representation as points in a continuous, high-dimensional space, where diseases with similar etiology and manifestations lie near one another. We use the UK Biobank cohort, with half a million participants, to perform a genome-wide association study of newly defined human quantitative traits reflecting individuals' health states, corresponding to patient positions in our disease space. We discover 116 genetic associations involving 108 genetic loci and then use ten disease constellations resulting from clustering analysis of diseases in the embedding space, as well as 30 common diseases, to demonstrate that these genetic associations can be used to robustly predict various morbidities.


Subject(s)
Genetic Loci , Genome-Wide Association Study , Humans , United States , Genome-Wide Association Study/methods , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL