Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
BMC Microbiol ; 22(1): 31, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35057744

ABSTRACT

BACKGROUND: Nasopharyngeal colonization is considered a necessary step in the initiation of pneumococcal diseases. Real time PCR (RT-PCR) is an alternative approach for the identification and quantification of pneumococci directly from samples. OBJECTIVES: To compare pneumococcal detection rates using culture-based method versus RT-PCR direct detection and to quantify pneumococcal colonization in two study cohorts (healthy children and hospitalized children with respiratory symptoms) using quantitation through RT-PCR. METHODOLOGY: A total of 101 nasopharyngeal swabs (NPS) from healthy children and 183 NPSs from hospitalized children with respiratory symptoms were included in the study. None of the children were vaccinated. All children were between 2 months to 2 years. In parallel to routine culture and identification, a RT-PCR assay targeting the lytA gene was done. RESULTS: Considering all 284 samples tested, colonization rate by conventional culture was 41.2% (n = 117) while positive colonization using RT-PCR was 43.7% (n = 124). The colonization rate detected by RT-PCR in the healthy cohort was 33.7% (n = 34) and it was 49.2% (n = 90) in the hospitalized cohort. It was 37.6% (n = 38) and 43.2% (n = 79) for the two cohorts by culture. The mean Cq value for the healthy cohort is 29.61 (SD 2.85) and 28.93 (SD 3.62) for the hospitalized cohort. With the standard curve obtained from amplifying a dilution series of control DNA, the mean amount of genomic DNA copy numbers detected in children with respiratory symptoms was log10 7.49 (SD 1.07) while it was log10 7.30 (SD 0.23) in healthy children and the difference was not statistically significant. CONCLUSIONS: The overall colonization rate was higher when detected using RT-PCR compared to culture. However, it was lower in the healthy group when detected with RT-PCR compared to culture. Even though there was a higher detection of pneumococcal colonization density in children with respiratory symptoms, this was not significantly higher unlike many previous studies. Therefore, the use of RT-PCR to detect pneumococcal colonization needs further evaluation with careful analysis of interpretation and confounders.


Subject(s)
Bacteriological Techniques/standards , Hospitalization/statistics & numerical data , Pneumococcal Infections/microbiology , Real-Time Polymerase Chain Reaction/standards , Streptococcus pneumoniae/growth & development , Streptococcus pneumoniae/genetics , Child, Preschool , Cohort Studies , Healthy Volunteers/statistics & numerical data , Humans , Infant , Nasopharynx/microbiology , Real-Time Polymerase Chain Reaction/methods , Respiratory Tract Infections/microbiology , Streptococcus pneumoniae/isolation & purification
2.
Int J Tuberc Lung Dis ; 27(9): 658-667, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37608484

ABSTRACT

BACKGROUND: The aim of these clinical standards is to aid the diagnosis and management of asthma in low-resource settings in low- and middle-income countries (LMICs).METHODS: A panel of 52 experts in the field of asthma in LMICs participated in a two-stage Delphi process to establish and reach a consensus on the clinical standards.RESULTS: Eighteen clinical standards were defined: Standard 1, Every individual with symptoms and signs compatible with asthma should undergo a clinical assessment; Standard 2, In individuals (>6 years) with a clinical assessment supportive of a diagnosis of asthma, a hand-held spirometry measurement should be used to confirm variable expiratory airflow limitation by demonstrating an acute response to a bronchodilator; Standard 3, Pre- and post-bronchodilator spirometry should be performed in individuals (>6 years) to support diagnosis before treatment is commenced if there is diagnostic uncertainty; Standard 4, Individuals with an acute exacerbation of asthma and clinical signs of hypoxaemia or increased work of breathing should be given supplementary oxygen to maintain saturation at 94-98%; Standard 5, Inhaled short-acting beta-2 agonists (SABAs) should be used as an emergency reliever in individuals with asthma via an appropriate spacer device for metered-dose inhalers; Standard 6, Short-course oral corticosteroids should be administered in appropriate doses to individuals having moderate to severe acute asthma exacerbations (minimum 3-5 days); Standard 7, Individuals having a severe asthma exacerbation should receive emergency care, including oxygen therapy, systemic corticosteroids, inhaled bronchodilators (e.g., salbutamol with or without ipratropium bromide) and a single dose of intravenous magnesium sulphate should be considered; Standard 8, All individuals with asthma should receive education about asthma and a personalised action plan; Standard 9, Inhaled medications (excluding dry-powder devices) should be administered via an appropriate spacer device in both adults and children. Children aged 0-3 years will require the spacer to be coupled to a face mask; Standard 10, Children aged <5 years with asthma should receive a SABA as-needed at step 1 and an inhaled corticosteroid (ICS) to cover periods of wheezing due to respiratory viral infections, and SABA as-needed and daily ICS from step 2 upwards; Standard 11, Children aged 6-11 years with asthma should receive an ICS taken whenever an inhaled SABA is used; Standard 12, All adolescents aged 12-18 years and adults with asthma should receive a combination inhaler (ICS and rapid onset of action long-acting beta-agonist [LABA] such as budesonide-formoterol), where available, to be used either as-needed (for mild asthma) or as both maintenance and reliever therapy, for moderate to severe asthma; Standard 13, Inhaled SABA alone for the management of patients aged >12 years is not recommended as it is associated with increased risk of morbidity and mortality. It should only be used where there is no access to ICS.The following standards (14-18) are for settings where there is no access to inhaled medicines. Standard 14, Patients without access to corticosteroids should be provided with a single short course of emergency oral prednisolone; Standard 15, Oral SABA for symptomatic relief should be used only if no inhaled SABA is available. Adjust to the individual's lowest beneficial dose to minimise adverse effects; Standard 16, Oral leukotriene receptor antagonists (LTRA) can be used as a preventive medication and is preferable to the use of long-term oral systemic corticosteroids; Standard 17, In exceptional circumstances, when there is a high risk of mortality from exacerbations, low-dose oral prednisolone daily or on alternate days may be considered on a case-by-case basis; Standard 18. Oral theophylline should be restricted for use in situations where it is the only bronchodilator treatment option available.CONCLUSION: These first consensus-based clinical standards for asthma management in LMICs are intended to help clinicians provide the most effective care for people in resource-limited settings.


Subject(s)
Asthma , Developing Countries , Adolescent , Adult , Child , Humans , Bronchodilator Agents/therapeutic use , Asthma/diagnosis , Asthma/drug therapy , Albuterol , Prednisolone
3.
Int J Pediatr Endocrinol ; 2016: 21, 2016.
Article in English | MEDLINE | ID: mdl-27891155

ABSTRACT

BACKGROUND: Rabson Mendenhall syndrome is a rare endocrine condition characterized by severe insulin resistance and hyperglycemia. It occurs due to mutations in the insulin receptor gene. Few mutations which are associated with Rabson Mendenhall syndrome have been identified and reported in the past. The management of this condition is extremely challenging and will need multi-disciplinary approach. CASE PRESENTATION: An 11 year old boy presented with polyuria and polydipsia. He was noted to have coarse facies, severe acanthosis nigricans, hypertrichosis, retarded growth and developmental delay. Investigations revealed severe hyperglycemia which was poorly responsive to high doses of insulin. A diagnosis of Rabson Mendenhall syndrome was suspected based on his physical characteristics in the presence of insulin resistance. Genetic studies revealed a homozygous missense mutation in the Insulin receptor gene confirming the diagnosis of Rabson Mendenhall syndrome. This is a novel mutation which has not been reported previously. CONCLUSION: Rabson Mendenhall syndrome should be suspected in a patient with characteristic physical features, severe hyperglycemia and insulin resistance. The genetic studies will not only confirm the diagnosis but also will help in counselling. Wider collaboration is needed to identify definitive treatment options for managing this rare condition.

SELECTION OF CITATIONS
SEARCH DETAIL