Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nat Microbiol ; 9(7): 1655-1660, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38877224

ABSTRACT

Biofuel production by Clostridium acetobutylicum is compromised by strain degeneration due to loss of its pSOL1 megaplasmid. Here we used engineering biology to stably integrate pSOL1 into the chromosome together with a synthetic isopropanol pathway. In a membrane bioreactor continuously fed with glucose mineral medium, the final strain produced advanced biofuels, n-butanol and isopropanol, at high yield (0.31 g g-1), titre (15.4 g l-1) and productivity (15.5 g l-1 h-1) without degeneration.


Subject(s)
1-Butanol , 2-Propanol , Biofuels , Bioreactors , Clostridium acetobutylicum , Metabolic Engineering , Plasmids , Clostridium acetobutylicum/genetics , Clostridium acetobutylicum/metabolism , Biofuels/microbiology , Plasmids/genetics , Bioreactors/microbiology , 1-Butanol/metabolism , 2-Propanol/metabolism , Fermentation , Glucose/metabolism , Chromosomes, Bacterial/genetics
2.
Appl Microbiol Biotechnol ; 94(3): 729-41, 2012 May.
Article in English | MEDLINE | ID: mdl-22249720

ABSTRACT

In microorganisms, the enzyme acetate kinase (AK) catalyses the formation of ATP from ADP by de-phosphorylation of acetyl phosphate into acetic acid. A mutant strain of Clostridium acetobutylicum lacking acetate kinase activity is expected to have reduced acetate and acetone production compared to the wild type. In this work, a C. acetobutylicum mutant strain with a selectively disrupted ack gene, encoding AK, was constructed and genetically and physiologically characterized. The ack (-) strain showed a reduction in acetate kinase activity of more than 97% compared to the wild type. The fermentation profiles of the ack (-) and wild-type strain were compared using two different fermentation media, CGM and CM1. The latter contains acetate and has a higher iron and magnesium content than CGM. In general, fermentations by the mutant strain showed a clear shift in the timing of peak acetate production relative to butyrate and had increased acid uptake after the onset of solvent formation. Specifically, in acetate containing CM1 medium, acetate production was reduced by more than 80% compared to the wild type under the same conditions, but both strains produced similar final amounts of solvents. Fermentations in CGM showed similar peak acetate and butyrate levels, but increased acetoin (60%), ethanol (63%) and butanol (16%) production and reduced lactate (-50%) formation by the mutant compared to the wild type. These findings are in agreement with the proposed regulatory function of butyryl phosphate as opposed to acetyl phosphate in the metabolic switch of solventogenic clostridia.


Subject(s)
Acetate Kinase/genetics , Acetate Kinase/metabolism , Acetic Acid/metabolism , Clostridium acetobutylicum/enzymology , Clostridium acetobutylicum/genetics , Gene Knockout Techniques , Acetoin/metabolism , Butanols/metabolism , Butyrates/metabolism , Clostridium acetobutylicum/metabolism , Culture Media/chemistry , Ethanol/metabolism , Fermentation
3.
Appl Environ Microbiol ; 77(8): 2582-8, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21335380

ABSTRACT

Acetoin reductase (ACR) catalyzes the conversion of acetoin to 2,3-butanediol. Under certain conditions, Clostridium acetobutylicum ATCC 824 (and strains derived from it) generates both d- and l-stereoisomers of acetoin, but because of the absence of an ACR enzyme, it does not produce 2,3-butanediol. A gene encoding ACR from Clostridium beijerinckii NCIMB 8052 was functionally expressed in C. acetobutylicum under the control of two strong promoters, the constitutive thl promoter and the late exponential adc promoter. Both ACR-overproducing strains were grown in batch cultures, during which 89 to 90% of the natively produced acetoin was converted to 20 to 22 mM d-2,3-butanediol. The addition of a racemic mixture of acetoin led to the production of both d-2,3-butanediol and meso-2,3-butanediol. A metabolic network that is in agreement with the experimental data is proposed. Native 2,3-butanediol production is a first step toward a potential homofermentative 2-butanol-producing strain of C. acetobutylicum.


Subject(s)
Alcohol Oxidoreductases/metabolism , Butylene Glycols/metabolism , Clostridium acetobutylicum/metabolism , Clostridium beijerinckii/genetics , Alcohol Oxidoreductases/genetics , Biofuels/microbiology , Chromatography, High Pressure Liquid , Clostridium acetobutylicum/genetics , Fermentation , Gas Chromatography-Mass Spectrometry , Gene Expression , Genetic Engineering , Promoter Regions, Genetic , Stereoisomerism
4.
Biotechnol Biofuels ; 9: 4, 2016.
Article in English | MEDLINE | ID: mdl-26732067

ABSTRACT

BACKGROUND: Clostridium acetobutylicum represents a paradigm chassis for the industrial production of the biofuel biobutanol and a focus for metabolic engineering. We have previously developed procedures for the creation of in-frame, marker-less deletion mutants in the pathogen Clostridium difficile based on the use of pyrE and codA genes as counter selection markers. In the current study we sought to test their suitability for use in C. acetobutylicum. RESULTS: Both systems readily allowed the isolation of in-frame deletions of the C. acetobutylicum ATCC 824 spo0A and the cac824I genes, leading to a sporulation minus phenotype and improved transformation, respectively. The pyrE-based system was additionally used to inactivate a putative glycogen synthase (CA_C2239, glgA) and the pSOL1 amylase gene (CA_P0168, amyP), leading to lack of production of granulose and amylase, respectively. Their isolation provided the opportunity to make use of one of the key pyrE system advantages, the ability to rapidly complement mutations at appropriate gene dosages in the genome. In both cases, their phenotypes were restored in terms of production of granulose (glgA) and amylase (amyP). Genome re-sequencing of the ATCC 824 COSMIC consortium laboratory strain used revealed the presence of 177 SNVs and 49 Indels, including a 4916-bp deletion in the pSOL1 megaplasmid. A total of 175 SNVs and 48 Indels were subsequently shown to be present in an 824 strain re-acquired (Nov 2011) from the ATCC and are, therefore, most likely errors in the published genome sequence, NC_003030 (chromosome) and NC_001988 (pSOL1). CONCLUSIONS: The codA or pyrE counter selection markers appear equally effective in isolating deletion mutants, but there is considerable merit in using a pyrE mutant as the host as, through the use of ACE (Allele-Coupled Exchange) vectors, mutants created (by whatever means) can be rapidly complemented concomitant with restoration of the pyrE allele. This avoids the phenotypic effects frequently observed with high copy number plasmids and dispenses with the need to add antibiotic to ensure plasmid retention. Our study also revealed a surprising number of errors in the ATCC 824 genome sequence, while at the same time emphasising the need to re-sequence commonly used laboratory strains.

5.
AMB Express ; 2(1): 45, 2012 Aug 21.
Article in English | MEDLINE | ID: mdl-22909015

ABSTRACT

Isopropanol represents a widely-used commercial alcohol which is currently produced from petroleum. In nature, isopropanol is excreted by some strains of Clostridium beijerinckii, simultaneously with butanol and ethanol during the isopropanol butanol ethanol (IBE) fermentation. In order to increase isopropanol production, the gene encoding the secondary-alcohol dehydrogenase enzyme from C. beijerinckii NRRL B593 (adh) which catalyzes the reduction of acetone to isopropanol, was cloned into the acetone, butanol and ethanol (ABE)-producing strain C. acetobutylicum ATCC 824. The transformants showed high capacity for conversion of acetone into isopropanol (> 95%). To increase isopropanol production levels in ATCC 824, polycistronic transcription units containing, in addition to the adh gene, homologous genes of the acetoacetate decarboxylase (adc), and/or the acetoacetyl-CoA:acetate/butyrate:CoA transferase subunits A and B (ctfA and ctfB) were constructed and introduced into the wild-type strain. Combined overexpression of the ctfA and ctfB genes resulted in enhanced solvent production. In non-pH-controlled batch cultures, the total solvents excreted by the transformant overexpressing the adh, ctfA, ctfB and adc genes were 24.4 g/L IBE (including 8.8 g/L isopropanol), while the control strain harbouring an empty plasmid produced only 20.2 g/L ABE (including 7.6 g/L acetone). The overexpression of the adc gene had limited effect on IBE production. Interestingly, all transformants with the adh gene converted acetoin (a minor fermentation product) into 2,3-butanediol, highlighting the wide metabolic versatility of solvent-producing Clostridia.

6.
J Biotechnol ; 161(3): 366-77, 2012 Oct 31.
Article in English | MEDLINE | ID: mdl-22484128

ABSTRACT

To gain more insight into the butanol stress response of Clostridium acetobutylicum the transcriptional response of a steady state acidogenic culture to different levels of n-butanol (0.25-1%) was investigated. No effect was observed on the fermentation pattern and expression of typical solvent genes (aad, ctfA/B, adc, bdhA/B, ptb, buk). Elevated levels of butanol mainly affected class I heat-shock genes (hrcA, grpE, dnaK, dnaJ, groES, groEL, hsp90), which were upregulated in a dose- and time-dependent manner, and genes encoding proteins involved in the membrane composition (fab and fad or glycerophospholipid related genes) and various ABC-transporters of unknown specificity. Interestingly, fab and fad genes were embedded in a large, entirely repressed cluster (CAC1988-CAC2019), which inter alia encoded an iron-specific ABC-transporter and molybdenum-cofactor synthesis proteins. Of the glycerophospholipid metabolism, the glycerol-3-phosphate dehydrogenase (glpA) gene was highly upregulated, whereas a glycerophosphodiester ABC-transporter (ugpAEBC) and a phosphodiesterase (ugpC) were repressed. On the megaplasmid, only a few genes showed differential expression, e.g. a rare lipoprotein (CAP0058, repressed) and a membrane protein (CAP0102, upregulated) gene. Observed transcriptional responses suggest that C. acetobutylicum reacts to butanol stress by induction of the general stress response and changing its cell envelope and transporter composition, but leaving the central catabolism unaffected.


Subject(s)
1-Butanol/pharmacology , Acids/metabolism , Adaptation, Physiological/genetics , Bioreactors/microbiology , Clostridium acetobutylicum/cytology , Clostridium acetobutylicum/genetics , Transcription, Genetic/drug effects , Adaptation, Physiological/drug effects , Clostridium acetobutylicum/drug effects , Clostridium acetobutylicum/growth & development , Gene Expression Profiling , Gene Expression Regulation, Bacterial/drug effects , Models, Biological , Repressor Proteins/genetics , Repressor Proteins/metabolism , Stress, Physiological/drug effects , Stress, Physiological/genetics , Up-Regulation/drug effects , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL