Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Proc Natl Acad Sci U S A ; 120(18): e2216342120, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37098070

ABSTRACT

NKG2D (natural-killer group 2, member D) is a homodimeric transmembrane receptor that plays an important role in NK, γδ+, and CD8+ T cell-mediated immune responses to environmental stressors such as viral or bacterial infections and oxidative stress. However, aberrant NKG2D signaling has also been associated with chronic inflammatory and autoimmune diseases, and as such NKG2D is thought to be an attractive target for immune intervention. Here, we describe a comprehensive small-molecule hit identification strategy and two distinct series of protein-protein interaction inhibitors of NKG2D. Although the hits are chemically distinct, they share a unique allosteric mechanism of disrupting ligand binding by accessing a cryptic pocket and causing the two monomers of the NKG2D dimer to open apart and twist relative to one another. Leveraging a suite of biochemical and cell-based assays coupled with structure-based drug design, we established tractable structure-activity relationships with one of the chemical series and successfully improved both the potency and physicochemical properties. Together, we demonstrate that it is possible, albeit challenging, to disrupt the interaction between NKG2D and multiple protein ligands with a single molecule through allosteric modulation of the NKG2D receptor dimer/ligand interface.


Subject(s)
Killer Cells, Natural , NK Cell Lectin-Like Receptor Subfamily K , Ligands , CD8-Positive T-Lymphocytes , Protein Binding
2.
Bioorg Med Chem Lett ; 96: 129492, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37778428

ABSTRACT

Natural killer group 2D (NKG2D) is a homodimeric activating immunoreceptor whose function is to detect and eliminate compromised cells upon binding to the NKG2D ligands (NKG2DL) major histocompatibility complex (MHC) molecules class I-related chain A (MICA) and B (MICB) and UL16 binding proteins (ULBP1-6). While typically present at low levels in healthy cells and tissue, NKG2DL expression can be induced by viral infection, cellular stress or transformation. Aberrant activity along the NKG2D/NKG2DL axis has been associated with autoimmune diseases due to the increased expression of NKG2D ligands in human disease tissue, making NKG2D inhibitors an attractive target for immunomodulation. Herein we describe the discovery and optimization of small molecule PPI (protein-protein interaction) inhibitors of NKG2D/NKG2DL. Rapid SAR was guided by structure-based drug design and accomplished by iterative singleton and parallel medicinal chemistry synthesis. These efforts resulted in the identification of several potent analogs (14, 21, 30, 45) with functional activity and improved LLE.


Subject(s)
Carrier Proteins , NK Cell Lectin-Like Receptor Subfamily K , Humans , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Carrier Proteins/metabolism , Histocompatibility Antigens Class I/metabolism , Protein Binding , Killer Cells, Natural/metabolism , Ligands
3.
Bioorg Med Chem Lett ; 25(7): 1532-7, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25746813

ABSTRACT

A series of novel enhancer of zeste homolog 2 (EZH2) inhibitors was designed based on the chemical structure of the histone methyltransferase (HMT) inhibitor SAH (S-adenosyl-l-homocysteine). These nucleoside-based EZH2 inhibitors blocked the methylation of nucleosomes at H3K27 in biochemical assays employing both WT PRC2 complex as well as a Y641N mutant PRC2 complex. The most potent compound, 27, displayed IC50's against both complexes of 270 nM and 70 nM, respectively. To our knowledge, compound 27 is the most potent SAH-derived inhibitor of the EZH2 PRC2 complex yet identified. This compound also displayed improved potency, lipophilic efficiency (LipE), and selectivity profile against other lysine methyltransferases compared with SAH.


Subject(s)
Polycomb Repressive Complex 2/antagonists & inhibitors , S-Adenosylhomocysteine/pharmacology , Dose-Response Relationship, Drug , Drug Design , Enhancer of Zeste Homolog 2 Protein , Humans , Models, Molecular , Molecular Structure , S-Adenosylhomocysteine/chemical synthesis , S-Adenosylhomocysteine/chemistry , Structure-Activity Relationship
4.
Cell Chem Biol ; 30(10): 1191-1210.e20, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37557181

ABSTRACT

KAT6A, and its paralog KAT6B, are histone lysine acetyltransferases (HAT) that acetylate histone H3K23 and exert an oncogenic role in several tumor types including breast cancer where KAT6A is frequently amplified/overexpressed. However, pharmacologic targeting of KAT6A to achieve therapeutic benefit has been a challenge. Here we describe identification of a highly potent, selective, and orally bioavailable KAT6A/KAT6B inhibitor CTx-648 (PF-9363), derived from a benzisoxazole series, which demonstrates anti-tumor activity in correlation with H3K23Ac inhibition in KAT6A over-expressing breast cancer. Transcriptional and epigenetic profiling studies show reduced RNA Pol II binding and downregulation of genes involved in estrogen signaling, cell cycle, Myc and stem cell pathways associated with CTx-648 anti-tumor activity in ER-positive (ER+) breast cancer. CTx-648 treatment leads to potent tumor growth inhibition in ER+ breast cancer in vivo models, including models refractory to endocrine therapy, highlighting the potential for targeting KAT6A in ER+ breast cancer.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Histones/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Signal Transduction , Cell Line, Tumor
5.
J Pharmacol Exp Ther ; 338(3): 964-73, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21680888

ABSTRACT

PF04942847 [2-amino-4-{4-chloro-2-[2-(4-fluoro-1H-pyrazol-1-yl)ethoxy]-6-methylphenyl}-N-(2,2-difluoropropyl)-5,7-dihydro-6H-pyrrolo[3,4-d]pyrimidine-6-carboxamide] was identified as an orally available, ATP-competitive, small-molecule inhibitor of heat shock protein 90 (HSP90). The objectives of the present study were: 1) to characterize the pharmacokinetic-pharmacodynamic relationship of the plasma concentrations of PF04942847 to the inhibition of HSP90-dependent protein kinase, AKT, as a biomarker and 2) to characterize the relationship of AKT degradation to tumor growth inhibition as a pharmacological response (antitumor efficacy). Athymic mice implanted with MDA-MB-231 human breast cancer cells were treated with PF04942847 once daily at doses selected to encompass ED(50) values. Plasma concentrations of PF04942847 were adequately described by a two-compartment pharmacokinetic model. A time delay (hysteresis) was observed between the plasma concentrations of PF04942847 and AKT degradation; therefore, a link model was used to account for the hysteresis. The model reasonably fit the time courses of AKT degradation with the estimated EC(50) of 18 ng/ml. For tumor growth inhibition, the signal transduction model reasonably fit the inhibition of individual tumor growth curves with the estimated EC(50) of 7.3 ng/ml. Thus, the EC(50) for AKT degradation approximately corresponded to the EC(50) to EC(80) for tumor growth inhibition, suggesting that 50% AKT degradation was required for significant antitumor efficacy (50-80%). The consistent relationship between AKT degradation and antitumor efficacy was also demonstrated by applying an integrated signal transduction model for linking AKT degradation to tumor growth inhibition. The present results will be helpful in determining the appropriate dosing regimen and guiding dose escalation to achieve efficacious systemic exposure in the clinic.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrazoles/pharmacokinetics , Pyrimidines/pharmacology , Pyrimidines/pharmacokinetics , Algorithms , Animals , Biomarkers , Blood Proteins/metabolism , Breast Neoplasms/drug therapy , Cell Line, Tumor , Chromatography, High Pressure Liquid , Female , Humans , Mice , Mice, Nude , Models, Statistical , Oncogene Protein v-akt/metabolism , Protein Binding , Tandem Mass Spectrometry , Xenograft Model Antitumor Assays
6.
Bioorg Med Chem Lett ; 21(12): 3557-62, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21612924

ABSTRACT

A series of novel and potent small molecule Hsp90 inhibitors was optimized using X-ray crystal structures. These compounds bind in a deep pocket of the Hsp90 enzyme that is partially comprised by residues Asn51 and Ser52. Displacement of several water molecules observed crystallographically in this pocket using rule-based strategies led to significant improvements in inhibitor potency. An optimized inhibitor (compound 17) exhibited potent Hsp90 inhibition in ITC, biochemical, and cell-based assays (K(d)=1.3 nM, K(i)=15 nM, and cellular IC(50)=0.5 µM).


Subject(s)
Drug Design , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Small Molecule Libraries/chemistry , Binding Sites/drug effects , Crystallography, X-Ray , Humans , Inhibitory Concentration 50 , Models, Molecular , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrroles/chemical synthesis , Pyrroles/chemistry , Pyrroles/pharmacology , Small Molecule Libraries/pharmacology
7.
ACS Chem Biol ; 16(1): 27-34, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33373188

ABSTRACT

Chemical proteomics provides a powerful strategy for the high-throughput assignment of enzyme function or inhibitor selectivity. However, identifying optimized probes for an enzyme family member of interest and differentiating signal from the background remain persistent challenges in the field. To address this obstacle, here we report a physiochemical discernment strategy for optimizing chemical proteomics based on the coenzyme A (CoA) cofactor. First, we synthesize a pair of CoA-based sepharose pulldown resins differentiated by a single negatively charged residue and find this change alters their capture properties in gel-based profiling experiments. Next, we integrate these probes with quantitative proteomics and benchmark analysis of "probe selectivity" versus traditional "competitive chemical proteomics." This reveals that the former is well-suited for the identification of optimized pulldown probes for specific enzyme family members, while the latter may have advantages in discovery applications. Finally, we apply our anionic CoA pulldown probe to evaluate the selectivity of a recently reported small molecule N-terminal acetyltransferase inhibitor. These studies further validate the use of physical discriminant strategies in chemoproteomic hit identification and demonstrate how CoA-based chemoproteomic probes can be used to evaluate the selectivity of small molecule protein acetyltransferase inhibitors, an emerging class of preclinical therapeutic agents.


Subject(s)
Acetyltransferases/chemistry , Molecular Probes/chemistry , Proteomics/methods , Amino Acid Sequence , Chromatography, High Pressure Liquid/methods , Electrophoresis, Polyacrylamide Gel/methods , Reproducibility of Results , Substrate Specificity , Tandem Mass Spectrometry/methods
8.
J Med Chem ; 64(3): 1725-1732, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33529029

ABSTRACT

A pyridone-derived phosphate prodrug of an enhancer of zeste homolog 2 (EZH2) inhibitor was designed and synthesized to improve the inhibitor's aqueous solubility. This prodrug (compound 5) was profiled in pharmacokinetic experiments to assess its ability to deliver the corresponding parent compound (compound 2) to animals in vivo following oral administration. Results from these studies showed that the prodrug was efficiently converted to its parent compound in vivo. In separate experiments, the prodrug demonstrated impressive in vivo tumor growth inhibition in a diffuse large B-cell lymphoma Karpas-422 cell line-derived xenograft model. The described prodrug strategy is expected to be generally applicable to poorly soluble pyridone-containing EZH2 inhibitors and provides a new option to enable such compounds to achieve sufficiently high exposures in vivo.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Prodrugs/chemical synthesis , Prodrugs/pharmacology , Pyridones/chemical synthesis , Pyridones/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Drug Design , Humans , Lymphoma, B-Cell/drug therapy , Mice , Models, Molecular , Prodrugs/pharmacokinetics , Pyridones/pharmacokinetics , Rats , Xenograft Model Antitumor Assays
9.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 7): o1723, 2010 Jun 23.
Article in English | MEDLINE | ID: mdl-21587940

ABSTRACT

The structure of the title compound, C(12)H(9)BrN(4), prepared by the reaction of 2-bromo-1-(6-bromo-3-pyrid-yl)ethanone with 2-amino-3-methyl-pyrazine indicates that the compound with the bromo-pyridyl substituent at position 2 of the imidazopyrazine fused-ring system represents the major product of this reaction. The plane of the pyridine ring forms a dihedral angle of 16.2 (2)° with the essentially planar (r.m.s. deviation = 0.006 Å) imidazopyrazine system. In the crystal, mol-ecules are linked by weak C-H⋯N inter-actions.

10.
ACS Med Chem Lett ; 11(6): 1175-1184, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32550998

ABSTRACT

Two novel compounds were identified as Naa50 binders/inhibitors using DNA-encoded technology screening. Biophysical and biochemical data as well as cocrystal structures were obtained for both compounds (3a and 4a) to understand their mechanism of action. These data were also used to rationalize the binding affinity differences observed between the two compounds and a MLGP peptide-containing substrate. Cellular target engagement experiments further confirm the Naa50 binding of 4a and demonstrate its selectivity toward related enzymes (Naa10 and Naa60). Additional analogs of inhibitor 4a were also evaluated to study the binding mode observed in the cocrystal structures.

11.
J Comb Chem ; 11(5): 860-74, 2009.
Article in English | MEDLINE | ID: mdl-19583220

ABSTRACT

As part of an oncology chemistry program directed toward discovery of orally bioavailable inhibitors of the 90 kDa heat shock protein (Hsp90), several solution-phase libraries were designed and prepared. A 2 x 89 library of racemic resorcinol amides was prepared affording 131 purified compounds. After evaluation in a binding assay, followed by an AKT-Luminex cellular assay, three potent analogs had functional activity between 0.1 and 0.3 microM. Resolution by preparative chiral SFC chromatography led to (+)-15, (+)-16, and (+)-17 having functional IC(50) = 27, 43, and 190 nM, respectively. (+)-15 exhibited high clearance in human hepatocytes driven primarily by glucuronidation as confirmed by metabolite identification. A second 8 x 14 exploratory library was designed to investigate heterocyclic replacements of the resorcinol ring. The second library highlights the use of the (-)-sparteine-mediated enantioselective Pd-catalyzed alpha-arylation of N-Boc-pyrrolidine to prepare chiral 2-arylpyrrolidines in parallel.


Subject(s)
Chromatography, Gel/methods , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Combinatorial Chemistry Techniques , Crystallography, X-Ray , Glucuronides/metabolism , HSP90 Heat-Shock Proteins/chemistry , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Hydrogen Bonding , Pharmacokinetics , Protein Conformation
12.
Acta Crystallogr Sect E Struct Rep Online ; 65(Pt 6): o1249, 2009 May 14.
Article in English | MEDLINE | ID: mdl-21583114

ABSTRACT

The title compound, C(9)H(12)N(4)O(4)S, was proven to be the product of the reaction of methyl 5-amino-1H-pyrazole-3-carboxyl-ate with ethyl isothio-cyanato-carbonate. All non-H atoms of the mol-ecule are planar, the mean deviation from the least squares plane being 0.048 Å. The intra-molecular N-H⋯O bond involving the NH-group, which links the thio-urea and pyrazole fragments, closes a six-membered pseudo-heterocyclic ring, and two more hydrogen bonds (N-H⋯O with the participation of the pyrazole NH group and N-H⋯S involving the second thio-urea NH group) link the mol-ecules into infinite chains running along [10].

13.
Cancer Res ; 67(9): 4408-17, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17483355

ABSTRACT

The c-Met receptor tyrosine kinase and its ligand, hepatocyte growth factor (HGF), have been implicated in the progression of several human cancers and are attractive therapeutic targets. PF-2341066 was identified as a potent, orally bioavailable, ATP-competitive small-molecule inhibitor of the catalytic activity of c-Met kinase. PF-2341066 was selective for c-Met (and anaplastic lymphoma kinase) compared with a panel of >120 diverse tyrosine and serine-threonine kinases. PF-2341066 potently inhibited c-Met phosphorylation and c-Met-dependent proliferation, migration, or invasion of human tumor cells in vitro (IC(50) values, 5-20 nmol/L). In addition, PF-2341066 potently inhibited HGF-stimulated endothelial cell survival or invasion and serum-stimulated tubulogenesis in vitro, suggesting that this agent also exhibits antiangiogenic properties. PF-2341066 showed efficacy at well-tolerated doses, including marked cytoreductive antitumor activity, in several tumor models that expressed activated c-Met. The antitumor efficacy of PF-2341066 was dose dependent and showed a strong correlation to inhibition of c-Met phosphorylation in vivo. Near-maximal inhibition of c-Met activity for the full dosing interval was necessary to maximize the efficacy of PF-2341066. Additional mechanism-of-action studies showed dose-dependent inhibition of c-Met-dependent signal transduction, tumor cell proliferation (Ki67), induction of apoptosis (caspase-3), and reduction of microvessel density (CD31). These results indicated that the antitumor activity of PF-2341066 may be mediated by direct effects on tumor cell growth or survival as well as antiangiogenic mechanisms. Collectively, these results show the therapeutic potential of targeting c-Met with selective small-molecule inhibitors for the treatment of human cancers.


Subject(s)
Breast Neoplasms/drug therapy , Piperidines/pharmacology , Pyridines/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Stomach Neoplasms/drug therapy , Angiogenesis Inhibitors/pharmacology , Animals , Breast Neoplasms/blood supply , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Cell Growth Processes/drug effects , Crizotinib , Dogs , Dose-Response Relationship, Drug , Endothelial Cells/drug effects , Female , Humans , Male , Mice , Mice, Nude , Neovascularization, Pathologic/drug therapy , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Pyrazoles , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction/drug effects , Stomach Neoplasms/blood supply , Stomach Neoplasms/enzymology , Stomach Neoplasms/pathology , Xenograft Model Antitumor Assays
14.
Bioorg Med Chem Lett ; 18(23): 6273-8, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-18929486

ABSTRACT

Information from X-ray crystal structures were used to optimize the potency of a HTS hit in a Hsp90 competitive binding assay. A class of novel and potent small molecule Hsp90 inhibitors were thereby identified. Enantio-pure compounds 31 and 33 were potent in PGA-based competitive binding assay and inhibited proliferation of various human cancer cell lines in vitro, with IC(50) values averaging 20 nM.


Subject(s)
Amides/chemical synthesis , Amides/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Amides/chemistry , Amino Acids/chemistry , Antineoplastic Agents/chemistry , Combinatorial Chemistry Techniques , Crystallography, X-Ray , Drug Design , Drug Screening Assays, Antitumor , Humans , Molecular Chaperones/metabolism , Molecular Conformation , Molecular Structure , Structure-Activity Relationship
15.
Eur J Med Chem ; 43(6): 1321-9, 2008 Jun.
Article in English | MEDLINE | ID: mdl-17964000

ABSTRACT

A series of quinoline-containing c-Met inhibitors were prepared and studied. Chemistry was developed to introduce a pyridyl moiety onto the 2-aryl ring present in a lead molecule which mitigated the potential for quinone formation relative to the original compound. The study also assessed the importance of an acylthiourea moiety present in the lead structure for effective binding to the c-Met protein ATP site.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Quinolines/pharmacology , Magnetic Resonance Spectroscopy , Mass Spectrometry , Structure-Activity Relationship
16.
J Med Chem ; 61(3): 650-665, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29211475

ABSTRACT

A new series of lactam-derived EZH2 inhibitors was designed via ligand-based and physicochemical-property-based strategies to address metabolic stability and thermodynamic solubility issues associated with previous lead compound 1. The new inhibitors incorporated an sp3 hybridized carbon atom at the 7-position of the lactam moiety present in lead compound 1 as a replacement for a dimethylisoxazole group. This transformation enabled optimization of the physicochemical properties and potency compared to compound 1. Analysis of relationships between calculated log D (clogD) values and in vitro metabolic stability and permeability parameters identified a clogD range that afforded an increased probability of achieving favorable ADME data in a single molecule. Compound 23a exhibited the best overlap of potency and pharmaceutical properties as well as robust tumor growth inhibition in vivo and was therefore advanced as a development candidate (PF-06821497). A crystal structure of 23a in complex with the three-protein PRC2 complex enabled understanding of the key structural features required for optimal binding.


Subject(s)
Drug Design , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Isoquinolines/pharmacology , Isoquinolines/pharmacokinetics , Administration, Oral , Biological Availability , Cell Line, Tumor , Humans , Isoquinolines/administration & dosage , Isoquinolines/chemistry , Models, Molecular , Molecular Conformation
17.
Nat Commun ; 7: 11384, 2016 04 28.
Article in English | MEDLINE | ID: mdl-27122193

ABSTRACT

Polycomb repressive complex 2 (PRC2) mediates gene silencing through chromatin reorganization by methylation of histone H3 lysine 27 (H3K27). Overexpression of the complex and point mutations in the individual subunits of PRC2 have been shown to contribute to tumorigenesis. Several inhibitors of the PRC2 activity have shown efficacy in EZH2-mutated lymphomas and are currently in clinical development, although the molecular basis of inhibitor recognition remains unknown. Here we report the crystal structures of the inhibitor-bound wild-type and Y641N PRC2. The structures illuminate an important role played by a stretch of 17 residues in the N-terminal region of EZH2, we call the activation loop, in the stimulation of the enzyme activity, inhibitor recognition and the potential development of the mutation-mediated drug resistance. The work presented here provides new avenues for the design and development of next-generation PRC2 inhibitors through establishment of a structure-based drug design platform.


Subject(s)
Antineoplastic Agents/chemistry , Enzyme Inhibitors/chemistry , Polycomb Repressive Complex 2/antagonists & inhibitors , Polycomb Repressive Complex 2/chemistry , Drug Resistance, Neoplasm , Enhancer of Zeste Homolog 2 Protein/chemistry , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Humans , Models, Molecular , Mutation , Neoplasms/genetics , Neoplasms/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism
18.
J Med Chem ; 59(18): 8306-25, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27512831

ABSTRACT

A new enhancer of zeste homolog 2 (EZH2) inhibitor series comprising a substituted phenyl ring joined to a dimethylpyridone moiety via an amide linkage has been designed. A preferential amide torsion that improved the binding properties of the compounds was identified for this series via computational analysis. Cyclization of the amide linker resulted in a six-membered lactam analogue, compound 18. This transformation significantly improved the ligand efficiency/potency of the cyclized compound relative to its acyclic analogue. Additional optimization of the lactam-containing EZH2 inhibitors focused on lipophilic efficiency (LipE) improvement, which provided compound 31. Compound 31 displayed improved LipE and on-target potency in both biochemical and cellular readouts relative to compound 18. Inhibitor 31 also displayed robust in vivo antitumor growth activity and dose-dependent de-repression of EZH2 target genes.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Design , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Pyridones/chemistry , Pyridones/pharmacology , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cyclization , Enhancer of Zeste Homolog 2 Protein/metabolism , Female , Humans , Isoquinolines/chemistry , Isoquinolines/pharmacology , Isoquinolines/therapeutic use , Lactams/chemistry , Lactams/pharmacology , Mice , Mice, SCID , Models, Molecular , Neoplasms/drug therapy , Neoplasms/metabolism , Pyridones/therapeutic use
19.
Mol Cancer Ther ; 13(8): 2104-15, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24928852

ABSTRACT

Breast cancer patients with tumors lacking the three diagnostic markers (ER, PR, and HER2) are classified as triple-negative (primarily basal-like) and have poor prognosis because there is no disease-specific therapy available. To address this unmet medical need, gene expression analyses using more than a thousand breast cancer samples were conducted, which identified elevated centromere protein E (CENP-E) expression in the basal-a molecular subtype relative to other subtypes. CENP-E, a mitotic kinesin component of the spindle assembly checkpoint, is shown to be induced in basal-a tumor cell lines by the mitotic spindle inhibitor drug docetaxel. CENP-E knockdown by inducible shRNA reduces basal-a breast cancer cell viability. A potent, selective CENP-E inhibitor (PF-2771) was used to define the contribution of CENP-E motor function to basal-like breast cancer. Mechanistic evaluation of PF-2771 in basal-a tumor cells links CENP-E-dependent molecular events (e.g., phosphorylation of histone H3 Ser-10; phospho-HH3-Ser10) to functional outcomes (e.g., chromosomal congression defects). Across a diverse panel of breast cell lines, CENP-E inhibition by PF-2771 selectively inhibits proliferation of basal breast cancer cell lines relative to premalignant ones and its response correlates with the degree of chromosomal instability. Pharmacokinetic-pharmacodynamic efficacy analysis in a basal-a xenograft tumor model shows that PF-2771 exposure is well correlated with increased phospho-HH3-Ser10 levels and tumor growth regression. Complete tumor regression is observed in a patient-derived, basal-a breast cancer xenograft tumor model treated with PF-2771. Tumor regression is also observed with PF-2771 in a taxane-resistant basal-a model. Taken together, CENP-E may be an effective therapeutic target for patients with triple-negative/basal-a breast cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Benzamides/pharmacology , Chromosomal Proteins, Non-Histone/genetics , Glycine/analogs & derivatives , Neoplasms, Basal Cell/metabolism , Triple Negative Breast Neoplasms/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Chromosomal Proteins, Non-Histone/metabolism , Female , Gene Expression , Glycine/pharmacology , Humans , Kaplan-Meier Estimate , Mice, SCID , Neoplasms, Basal Cell/drug therapy , Neoplasms, Basal Cell/mortality , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/mortality , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL