Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 176(3): 459-467.e13, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30639103

ABSTRACT

The cannabinoid receptor CB2 is predominately expressed in the immune system, and selective modulation of CB2 without the psychoactivity of CB1 has therapeutic potential in inflammatory, fibrotic, and neurodegenerative diseases. Here, we report the crystal structure of human CB2 in complex with a rationally designed antagonist, AM10257, at 2.8 Å resolution. The CB2-AM10257 structure reveals a distinctly different binding pose compared with CB1. However, the extracellular portion of the antagonist-bound CB2 shares a high degree of conformational similarity with the agonist-bound CB1, which led to the discovery of AM10257's unexpected opposing functional profile of CB2 antagonism versus CB1 agonism. Further structural analysis using mutagenesis studies and molecular docking revealed the molecular basis of their function and selectivity for CB2 and CB1. Additional analyses of our designed antagonist and agonist pairs provide important insight into the activation mechanism of CB2. The present findings should facilitate rational drug design toward precise modulation of the endocannabinoid system.


Subject(s)
Receptor, Cannabinoid, CB2/metabolism , Receptor, Cannabinoid, CB2/ultrastructure , Animals , Cannabinoid Receptor Antagonists/pharmacology , Cannabinoids/pharmacology , Drug Design , Endocannabinoids , Humans , Ligands , Molecular Docking Simulation , Protein Binding , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB2/chemistry , Receptors, Cannabinoid/chemistry , Receptors, Cannabinoid/metabolism , Receptors, Cannabinoid/ultrastructure , Receptors, G-Protein-Coupled/metabolism , Sf9 Cells , Structure-Activity Relationship
2.
J Am Soc Nephrol ; 35(3): 281-298, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38200648

ABSTRACT

SIGNIFICANCE STATEMENT: This study sheds light on the central role of adenine nucleotide translocase 2 (ANT2) in the pathogenesis of obesity-induced CKD. Our data demonstrate that ANT2 depletion in renal proximal tubule cells (RPTCs) leads to a shift in their primary metabolic program from fatty acid oxidation to aerobic glycolysis, resulting in mitochondrial protection, cellular survival, and preservation of renal function. These findings provide new insights into the underlying mechanisms of obesity-induced CKD and have the potential to be translated toward the development of targeted therapeutic strategies for this debilitating condition. BACKGROUND: The impairment in ATP production and transport in RPTCs has been linked to the pathogenesis of obesity-induced CKD. This condition is characterized by kidney dysfunction, inflammation, lipotoxicity, and fibrosis. In this study, we investigated the role of ANT2, which serves as the primary regulator of cellular ATP content in RPTCs, in the development of obesity-induced CKD. METHODS: We generated RPTC-specific ANT2 knockout ( RPTC-ANT2-/- ) mice, which were then subjected to a 24-week high-fat diet-feeding regimen. We conducted comprehensive assessment of renal morphology, function, and metabolic alterations of these mice. In addition, we used large-scale transcriptomics, proteomics, and metabolomics analyses to gain insights into the role of ANT2 in regulating mitochondrial function, RPTC physiology, and overall renal health. RESULTS: Our findings revealed that obese RPTC-ANT2-/- mice displayed preserved renal morphology and function, along with a notable absence of kidney lipotoxicity and fibrosis. The depletion of Ant2 in RPTCs led to a fundamental rewiring of their primary metabolic program. Specifically, these cells shifted from oxidizing fatty acids as their primary energy source to favoring aerobic glycolysis, a phenomenon mediated by the testis-selective Ant4. CONCLUSIONS: We propose a significant role for RPTC-Ant2 in the development of obesity-induced CKD. The nullification of RPTC-Ant2 triggers a cascade of cellular mechanisms, including mitochondrial protection, enhanced RPTC survival, and ultimately the preservation of kidney function. These findings shed new light on the complex metabolic pathways contributing to CKD development and suggest potential therapeutic targets for this condition.


Subject(s)
Kidney , Renal Insufficiency, Chronic , Male , Animals , Mice , Mitochondrial Membrane Transport Proteins , Fibrosis , Adenosine Triphosphate , Renal Insufficiency, Chronic/etiology
3.
Hepatology ; 74(1): 116-132, 2021 07.
Article in English | MEDLINE | ID: mdl-33236445

ABSTRACT

BACKGROUND ANDS AIMS: NAFLD is associated with elevation of many cytokines, particularly IL-6; however, the role of IL-6 in NAFLD remains obscure. The aim of this study was to examine how myeloid-specific IL-6 signaling affects NAFLD by the regulation of antifibrotic microRNA-223 (miR-223) in myeloid cells. APPROACH AND RESULTS: Patients with NAFLD or NASH and healthy controls were recruited, and serum IL-6 and soluble IL-6 receptor α (sIL-6Rα) were measured. Compared to controls, serum IL-6 and sIL-6Rα levels were elevated in NAFLD/NASH patients. IL-6 levels correlated positively with the number of circulating leukocytes and monocytes. The role of IL-6 in NAFLD was investigated in Il6 knockout (KO) and Il6 receptor A (Il6ra) conditional KO mice after high-fat diet (HFD) feeding. HFD-fed Il6 KO mice had worse liver injury and fibrosis, but less inflammation, compared to wild-type mice. Hepatocyte-specific Il6ra KO mice had more steatosis and liver injury, whereas myeloid-specific Il6ra KO mice had a lower number of hepatic infiltrating macrophages (IMs) and neutrophils with increased cell death of these cells, but greater liver fibrosis (LF), than WT mice. Mechanistically, the increased LF in HFD-fed, myeloid-specific Il6ra KO mice was attributable to the reduction of antifibrotic miR-223 and subsequent up-regulation of the miR-223 target gene, transcriptional activator with PDZ-binding motif (TAZ), a well-known factor to promote NASH fibrosis. In vitro, IL-6 treatment up-regulated exosome biogenesis-related genes and subsequently promoted macrophages to release miR-223-enriched exosomes that were able to reduce profibrotic TAZ expression in hepatocytes by exosomal transfer. Finally, serum IL-6 and miR-223 levels were elevated and correlated with each other in NAFLD patients. CONCLUSIONS: Myeloid-specific IL-6 signaling inhibits LF through exosomal transfer of antifibrotic miR-223 into hepatocytes, providing therapeutic targets for NAFLD therapy.


Subject(s)
Interleukin-6/metabolism , Liver Cirrhosis/immunology , MicroRNAs/metabolism , Non-alcoholic Fatty Liver Disease/immunology , Adult , Animals , Biopsy , Case-Control Studies , Diet, High-Fat , Exosomes/immunology , Exosomes/metabolism , Female , Gene Expression Regulation/immunology , Healthy Volunteers , Hepatocytes/pathology , Humans , Interleukin-6/blood , Interleukin-6/genetics , Liver/cytology , Liver/pathology , Liver Cirrhosis/blood , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Male , Mice , Mice, Knockout , MicroRNAs/blood , Middle Aged , Myeloid Cells/cytology , Myeloid Cells/metabolism , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Prospective Studies , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/metabolism , Signal Transduction/genetics , Signal Transduction/immunology , Transcriptional Coactivator with PDZ-Binding Motif Proteins/genetics
4.
Addict Biol ; 27(5): e13197, 2022 09.
Article in English | MEDLINE | ID: mdl-36001429

ABSTRACT

Several lines of evidence suggest that endocannabinoid signalling may influence alcohol consumption. Preclinical studies have found that pharmacological blockade of cannabinoid receptor 1 leads to reductions in alcohol intake. Furthermore, variations in endocannabinoid metabolism between individuals may be associated with the presence and severity of alcohol use disorder. However, little is known about the acute effects of alcohol on the endocannabinoid system in humans. In this study, we evaluated the effect of acute alcohol administration on circulating endocannabinoid levels by analysing data from two highly-controlled alcohol administration experiments. In the first within-subjects experiment, 47 healthy participants were randomized to receive alcohol and placebo in a counterbalanced order. Alcohol was administered using an intravenous clamping procedure such that each participant attained a nearly identical breath alcohol concentration of 0.05%, maintained over 3 h. In the second experiment, 23 healthy participants self-administered alcohol intravenously; participants had control over their exposure throughout the paradigm. In both experiments, circulating concentrations of two endocannabinoids, N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), were measured at baseline and following alcohol exposure. During the intravenous clamping procedure, acute alcohol administration reduced circulating AEA but not 2-AG levels when compared to placebo. This finding was confirmed in the self-administration paradigm, where alcohol reduced AEA levels in an exposure-dependent manner. Future studies should seek to determine whether alcohol administration has similar effects on brain endocannabinoid signalling. An improved understanding of the bidirectional relationship between endocannabinoid signalling and alcohol intake may deepen our understanding of the aetiology and repercussions of alcohol use disorder.


Subject(s)
Alcoholism , Endocannabinoids , Alcohol Drinking , Alcoholism/metabolism , Endocannabinoids/metabolism , Ethanol/pharmacology , Humans
5.
PLoS Genet ; 15(10): e1008424, 2019 10.
Article in English | MEDLINE | ID: mdl-31622341

ABSTRACT

Type 2 diabetes (T2D) has become a major health problem worldwide. Skeletal muscle (SKM) is the key tissue for whole-body glucose disposal and utilization. New drugs aimed at improving insulin sensitivity of SKM would greatly expand available therapeutic options. ß-arrestin-1 and -2 (Barr1 and Barr2, respectively) are two intracellular proteins best known for their ability to mediate the desensitization and internalization of G protein-coupled receptors (GPCRs). Recent studies suggest that Barr1 and Barr2 regulate several important metabolic functions including insulin release and hepatic glucose production. Since SKM expresses many GPCRs, including the metabolically important ß2-adrenergic receptor, the goal of this study was to examine the potential roles of Barr1 and Barr2 in regulating SKM and whole-body glucose metabolism. Using SKM-specific knockout (KO) mouse lines, we showed that the loss of SKM Barr2, but not of SKM Barr1, resulted in mild improvements in glucose tolerance in diet-induced obese mice. SKM-specific Barr1- and Barr2-KO mice did not show any significant differences in exercise performance. However, lack of SKM Barr2 led to increased glycogen breakdown following a treadmill exercise challenge. Interestingly, mice that lacked both Barr1 and Barr2 in SKM showed no significant metabolic phenotypes. Thus, somewhat surprisingly, our data indicate that SKM ß-arrestins play only rather subtle roles (SKM Barr2) in regulating whole-body glucose homeostasis and SKM insulin sensitivity.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Muscle, Skeletal/metabolism , Obesity/metabolism , beta-Arrestin 1/metabolism , beta-Arrestin 2/metabolism , Animals , Diabetes Mellitus, Type 2/etiology , Diet, High-Fat/adverse effects , Disease Models, Animal , Glucose/administration & dosage , Glucose/metabolism , Glucose Clamp Technique , Glycogen/metabolism , Humans , Insulin/metabolism , Insulin Resistance , Male , Mice , Mice, Knockout , Obesity/etiology , Signal Transduction/genetics , beta-Arrestin 1/genetics , beta-Arrestin 2/genetics
6.
Hepatology ; 72(2): 412-429, 2020 08.
Article in English | MEDLINE | ID: mdl-31705800

ABSTRACT

BACKGROUND AND AIMS: Nonalcoholic fatty liver disease encompasses a spectrum of diseases ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), cirrhosis, and liver cancer. At present, how simple steatosis progresses to NASH remains obscure and effective pharmacological therapies are lacking. Hepatic expression of C-X-C motif chemokine ligand 1 (CXCL1), a key chemokine for neutrophil infiltration (a hallmark of NASH), is highly elevated in NASH patients but not in fatty livers in obese individuals or in high-fat diet (HFD)-fed mice. The aim of this study was to test whether overexpression of CXCL1 itself in the liver can induce NASH in HFD-fed mice and to test the therapeutic potential of IL-22 in this new NASH model. APPROACH AND RESULTS: Overexpression of Cxcl1 in the liver alone promotes steatosis-to-NASH progression in HFD-fed mice by inducing neutrophil infiltration, oxidative stress, and stress kinase (such as apoptosis signal-regulating kinase 1 and p38 mitogen-activated protein kinase) activation. Myeloid cell-specific deletion of the neutrophil cytosolic factor 1 (Ncf1)/p47phox gene, which encodes a component of the NADPH oxidase 2 complex that mediates neutrophil oxidative burst, markedly reduced CXCL1-induced NASH and stress kinase activation in HFD-fed mice. Treatment with interleukin (IL)-22, a cytokine with multiple targets, ameliorated CXCL1/HFD-induced NASH or methionine-choline deficient diet-induced NASH in mice. Mechanistically, IL-22 blocked hepatic oxidative stress and its associated stress kinases via the induction of metallothionein, one of the most potent antioxidant proteins. Moreover, although it does not target immune cells, IL-22 treatment attenuated the inflammatory functions of hepatocyte-derived, mitochondrial DNA-enriched extracellular vesicles, thereby suppressing liver inflammation in NASH. CONCLUSIONS: Hepatic overexpression of CXCL1 is sufficient to drive steatosis-to-NASH progression in HFD-fed mice through neutrophil-derived reactive oxygen species and activation of stress kinases, which can be reversed by IL-22 treatment via the induction of metallothionein.


Subject(s)
Chemokine CXCL1/biosynthesis , Interleukins/therapeutic use , Liver/metabolism , Neutrophil Infiltration , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/prevention & control , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Neutrophils , Interleukin-22
7.
Molecules ; 26(16)2021 Aug 22.
Article in English | MEDLINE | ID: mdl-34443679

ABSTRACT

Alcohol consumption is associated with gut dysbiosis, increased intestinal permeability, endotoxemia, and a cascade that leads to persistent systemic inflammation, alcoholic liver disease, and other ailments. Craving for alcohol and its consequences depends, among other things, on the endocannabinoid system. We have analyzed the relative role of central vs. peripheral cannabinoid CB1 receptors (CB1R) using a "two-bottle" as well as a "drinking in the dark" paradigm in mice. The globally acting CB1R antagonist rimonabant and the non-brain penetrant CB1R antagonist JD5037 inhibited voluntary alcohol intake upon systemic but not upon intracerebroventricular administration in doses that elicited anxiogenic-like behavior and blocked CB1R-induced hypothermia and catalepsy. The peripherally restricted hybrid CB1R antagonist/iNOS inhibitor S-MRI-1867 was also effective in reducing alcohol consumption after oral gavage, while its R enantiomer (CB1R inactive/iNOS inhibitor) was not. The two MRI-1867 enantiomers were equally effective in inhibiting an alcohol-induced increase in portal blood endotoxin concentration that was caused by increased gut permeability. We conclude that (i) activation of peripheral CB1R plays a dominant role in promoting alcohol intake and (ii) the iNOS inhibitory function of MRI-1867 helps in mitigating the alcohol-induced increase in endotoxemia.


Subject(s)
Alcohol Drinking/pathology , Cannabinoid Receptor Antagonists/pharmacology , Endotoxemia/pathology , Ethanol/adverse effects , Nitric Oxide Synthase Type II/antagonists & inhibitors , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Alcohol Drinking/blood , Animals , Anxiety/blood , Anxiety/complications , Behavior, Animal/drug effects , Catalepsy/chemically induced , Catalepsy/complications , Cyclohexanols/administration & dosage , Elevated Plus Maze Test , Endotoxemia/blood , Endotoxemia/complications , Endotoxins/blood , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/metabolism , Hypothermia, Induced , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/metabolism , Pyrazoles/administration & dosage , Receptor, Cannabinoid, CB1/metabolism , Rimonabant/administration & dosage , Rimonabant/pharmacology , Stereoisomerism , Sulfonamides/administration & dosage
8.
Am J Respir Cell Mol Biol ; 62(2): 178-190, 2020 02.
Article in English | MEDLINE | ID: mdl-31419911

ABSTRACT

ATP-binding cassette (ABC) transporters are evolutionarily conserved membrane proteins that pump a variety of endogenous substrates across cell membranes. Certain subfamilies are known to interact with pharmaceutical compounds, potentially influencing drug delivery and treatment efficacy. However, the role of drug resistance-associated ABC transporters has not been examined in idiopathic pulmonary fibrosis (IPF) or its animal model: the bleomycin (BLM)-induced murine model. Here, we investigate the expression of two ABC transporters, P-gp (permeability glycoprotein) and BCRP (breast cancer resistance protein), in human IPF lung tissue and two different BLM-induced mouse models of pulmonary fibrosis. We obtained human IPF specimens from patients during lung transplantation and administered BLM to male C57BL/6J mice either by oropharyngeal aspiration (1 U/kg) or subcutaneous osmotic infusion (100 U/kg over 7 d). We report that P-gp and BCRP expression in lungs of patients with IPF was comparable to controls. However, murine lungs expressed increased levels of P-gp and BCRP after oropharyngeal and subcutaneous BLM administration. We localized this upregulation to multiple pulmonary cell types, including alveolar fibroblasts, endothelial cells, and type 2 epithelial cells. Functionally, this effect reduced murine lung exposure to nintedanib, a U.S. Food and Drug Administration-approved IPF therapy known to be a P-gp substrate. The study reveals a discrepancy between IPF pathophysiology and the common animal model of lung fibrosis. BLM-induced drug efflux in the murine lungs may present an uncontrolled confounding variable in the preclinical study of IPF drug candidates, and these findings will facilitate disease model validation and enhance new drug discoveries that will ultimately improve patient outcomes.


Subject(s)
Bleomycin/pharmacology , Endothelial Cells/drug effects , Fibroblasts/drug effects , Idiopathic Pulmonary Fibrosis/drug therapy , ATP Binding Cassette Transporter, Subfamily G, Member 2/drug effects , Animals , Disease Models, Animal , Endothelial Cells/metabolism , Female , Fibroblasts/metabolism , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Male , Mice, Inbred C57BL , Neoplasm Proteins/drug effects , Neoplasm Proteins/metabolism
9.
Hepatology ; 69(4): 1535-1548, 2019 04.
Article in English | MEDLINE | ID: mdl-30506571

ABSTRACT

Endocannabinoids promote energy conservation in obesity, whereas cannabinoid-1 receptor (CB1 R) blockade reverses body weight gain and insulin resistance and increases energy expenditure. Here we investigated the molecular mechanisms of the catabolic effects of CB1 R blockade in the liver. Exposure of primary mouse hepatocytes and HepG2 cells to the CB1 R agonist arachidonyl-2'-chloroethylamide inhibited the expression of Sirtuin-1 (Sirt1) and Rictor, a component of mechanistic target of rapamycin complex 2 (mTORC2) and suppressed insulin-induced Akt phosphorylation at serine 473. These effects were reversed by peripheral CB1 R antagonist JD5037 in control hepatocytes but not in hepatocytes deficient in Sirt1 and/or Rictor, indicating that these two proteins are required for the CB1 R-mediated inhibition of insulin signaling. Feeding C57BL/6J mice a high-fat diet (HFD) inhibited hepatic Sirt1/mTORC2/Akt signaling, and the inhibition was reversed by rimonabant or JD5037 in wild-type but not liver-specific Sirt1-/- (Sirt1-LKO) mice, to levels observed in hepatocyte-specific CB1 R-/- mice. A similar attenuation of hyperglycemia and hyperinsulinemia in wild-type mice with obesity but not in Sirt1-LKO mice could be attributed to insufficient reversal of HFD-induced mitochondrial reactive oxygen species generation in peripheral tissues in the latter. In contrast, JD5037 treatment was equally effective in HFD-fed wild-type and Sirt1-LKO mice in reducing hepatic steatosis, increasing fatty acid ß-oxidation, and activating 5'adenosine monophosphate-activated protein kinase (AMPK) through liver kinase B1 (LKB1), resulting in a similar increase in total energy expenditure in the two strains. Conclusion: Peripheral CB1 R blockade in mice with obesity improves glycemic control through the hepatic Sirt1/mTORC2/Akt pathway, whereas it increases fatty acid oxidation through LKB1/AMPK signaling.


Subject(s)
Insulin Resistance , Mechanistic Target of Rapamycin Complex 2/metabolism , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Sirtuin 1/metabolism , Sulfonamides/pharmacology , Adenylate Kinase/metabolism , Animals , Diet, High-Fat , Energy Metabolism/drug effects , Fatty Acids/metabolism , Hep G2 Cells , Hepatocytes/metabolism , Humans , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Liver/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism
10.
Hepatology ; 69(5): 1965-1982, 2019 05.
Article in English | MEDLINE | ID: mdl-30681731

ABSTRACT

Adipocyte death occurs under various physiopathological conditions, including obesity and alcohol drinking, and can trigger organ damage particularly in the liver, but the underlying mechanisms remain obscure. To explore these mechanisms, we developed a mouse model of inducible adipocyte death by overexpressing the human CD59 (hCD59) on adipocytes (adipocyte-specific hCD59 transgenic mice). Injection of these mice with intermedilysin (ILY), which rapidly lyses hCD59 expressing cells exclusively by binding to the hCD59 but not mouse CD59, resulted in the acute selective death of adipocytes, adipose macrophage infiltration, and elevation of serum free fatty acid (FFA) levels. ILY injection also resulted in the secondary damage to multiple organs with the strongest injury observed in the liver, with inflammation and hepatic macrophage activation. Mechanistically, acute adipocyte death elevated epinephrine and norepinephrine levels and activated lipolysis pathways in adipose tissue in a chemokine (C-C motif) receptor 2-positive (CCR2+ ) macrophage-dependent manner, which was followed by FFA release and lipotoxicity in the liver. Additionally, acute adipocyte death caused hepatic CCR2+ macrophage activation and infiltration, further exacerbating liver injury. Conclusion: Adipocyte death predominantly induces liver injury and inflammation, which is probably due to the superior sensitivity of hepatocytes to lipotoxicity and the abundance of macrophages in the liver.


Subject(s)
Adipocytes/physiology , Adipose Tissue/enzymology , Liver Diseases/etiology , Macrophages/physiology , Receptors, CCR2/metabolism , Animals , Bacteriocins , Cell Death , Disease Models, Animal , Epinephrine/blood , Fatty Acids, Nonesterified/blood , Female , Inflammation/etiology , Isoproterenol , Lipolysis , Liver Diseases/blood , Male , Mice, Transgenic , Norepinephrine/blood , Receptors, CCR2/genetics
11.
Alcohol Clin Exp Res ; 44(4): 790-805, 2020 04.
Article in English | MEDLINE | ID: mdl-32056226

ABSTRACT

Endocannabinoids are lipid mediators that interact with the same cannabinoid receptors that recognize Δ9 -tetrahydrocannabinol (THC), the psychoactive constituent of marijuana, to induce similar effects in the brain and periphery. Alcohol and THC are both addictive substances whose acute use elicits rewarding effects that can lead to chronic and compulsive use via engaging similar signaling pathways in the brain. In the liver, both alcohol and endocannabinoids activate lipogenic gene expression leading to fatty liver disease. This review focuses on evidence accumulated over the last 2 decades to indicate that both the addictive neural effects of ethanol and its organ toxic effects in the liver and elsewhere are mediated, to a large extent, by endocannabinoids signaling via cannabinoid-1 receptors (CB1 R). The therapeutic potential of CB1 R blockade globally or in peripheral tissues only is also discussed.


Subject(s)
Endocannabinoids/metabolism , Ethanol/metabolism , Liver/metabolism , Receptor, Cannabinoid, CB1/metabolism , Alcohol Drinking , Alcoholism/metabolism , Animals , Binge Drinking , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Antagonists/pharmacology , Humans , Lipogenesis/genetics , Liver Diseases, Alcoholic/metabolism , Marijuana Abuse , Receptor, Cannabinoid, CB2/metabolism
12.
Development ; 143(4): 609-22, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26884397

ABSTRACT

Endocannabinoid (EC) signaling mediates psychotropic effects and regulates appetite. By contrast, potential roles in organ development and embryonic energy consumption remain unknown. Here, we demonstrate that genetic or chemical inhibition of cannabinoid receptor (Cnr) activity disrupts liver development and metabolic function in zebrafish (Danio rerio), impacting hepatic differentiation, but not endodermal specification: loss of cannabinoid receptor 1 (cnr1) and cnr2 activity leads to smaller livers with fewer hepatocytes, reduced liver-specific gene expression and proliferation. Functional assays reveal abnormal biliary anatomy and lipid handling. Adult cnr2 mutants are susceptible to hepatic steatosis. Metabolomic analysis reveals reduced methionine content in Cnr mutants. Methionine supplementation rescues developmental and metabolic defects in Cnr mutant livers, suggesting a causal relationship between EC signaling, methionine deficiency and impaired liver development. The effect of Cnr on methionine metabolism is regulated by sterol regulatory element-binding transcription factors (Srebfs), as their overexpression rescues Cnr mutant liver phenotypes in a methionine-dependent manner. Our work describes a novel developmental role for EC signaling, whereby Cnr-mediated regulation of Srebfs and methionine metabolism impacts liver development and function.


Subject(s)
Liver/embryology , Liver/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Signal Transduction , Zebrafish Proteins/metabolism , Zebrafish/embryology , Zebrafish/metabolism , Animals , Cannabinoids/metabolism , Cell Count , Cell Proliferation/drug effects , Cysteine/pharmacology , Hepatocytes/cytology , Hepatocytes/drug effects , Hepatocytes/metabolism , Liver/drug effects , Metabolomics , Methionine/metabolism , Mutation/genetics , Organ Size/drug effects , Signal Transduction/drug effects , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/metabolism
13.
Hepatology ; 68(4): 1519-1533, 2018 10.
Article in English | MEDLINE | ID: mdl-29631342

ABSTRACT

Tubular dysfunction is an important feature of renal injury in hepatorenal syndrome (HRS) in patients with end-stage liver disease. The pathogenesis of kidney injury in HRS is elusive, and there are no clinically relevant rodent models of HRS. We investigated the renal consequences of bile duct ligation (BDL)-induced hepatic and renal injury in mice in vivo by using biochemical assays, real-time polymerase chain reaction (PCR), Western blot, mass spectrometry, histology, and electron microscopy. BDL resulted in time-dependent hepatic injury and hyperammonemia which were paralleled by tubular dilation and tubulointerstitial nephritis with marked upregulation of lipocalin-2, kidney injury molecule 1 (KIM-1) and osteopontin. Renal injury was associated with dramatically impaired microvascular flow and decreased endothelial nitric oxide synthase (eNOS) activity. Gene expression analyses signified proximal tubular epithelial injury, tissue hypoxia, inflammation, and activation of the fibrotic gene program. Marked changes in renal arginine metabolism (upregulation of arginase-2 and downregulation of argininosuccinate synthase 1), resulted in decreased circulating arginine levels. Arginase-2 knockout mice were partially protected from BDL-induced renal injury and had less impairment in microvascular function. In human-cultured proximal tubular epithelial cells hyperammonemia per se induced upregulation of arginase-2 and markers of tubular cell injury. CONCLUSION: We propose that hyperammonemia may contribute to impaired renal arginine metabolism, leading to decreased eNOS activity, impaired microcirculation, tubular cell death, tubulointerstitial nephritis and fibrosis. Genetic deletion of arginase-2 partially restores microcirculation and thereby alleviates tubular injury. We also demonstrate that BDL in mice is an excellent, clinically relevant model to study the renal consequences of HRS. (Hepatology 2018; 00:000-000).


Subject(s)
Acute Kidney Injury/metabolism , Arginine/metabolism , Hepatorenal Syndrome/pathology , Kidney Tubules/pathology , Nitric Oxide Synthase/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/physiopathology , Animals , Biomarkers/metabolism , Biopsy, Needle , Disease Models, Animal , Disease Progression , Hepatorenal Syndrome/mortality , Hepatorenal Syndrome/physiopathology , Humans , Immunohistochemistry , Kidney Tubules/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Random Allocation , Risk Assessment , Sensitivity and Specificity , Severity of Illness Index , Survival Rate
14.
Regul Toxicol Pharmacol ; 109: 104483, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31580887

ABSTRACT

JD5037 is a novel peripherally restricted CB1 receptor (CB1R) inverse agonist being developed for the treatment of visceral obesity and its metabolic complications, including nonalcoholic fatty liver disease and dyslipidemia. JD5037 was administered by oral gavage at 10, 40, and 150 mg/kg/day dose levels for up to 34 days to Sprague Dawley rats, and at 5, 20, and 75 mg/kg/day dose levels for 28 consecutive days to Beagle dogs. In rats, higher incidences of stereotypic behaviors were observed in 10 mg/kg females and 40 mg/kg males, and slower responses for reflex and sensory tests were observed only in males at 10 and 40 mg/kg during neurobehavioral testing. Sporadic minimal incidences of decreased activity (males) and seizures (both sexes) were observed in rats during daily clinical observations, without any clear dose-relationship. Male dogs at 75 mg/kg during treatment period, but not recovery period, had an increased incidence of gut associated lymphoid tissue hyperplasia and inflammation in the intestine. In both species, highest dose resulted in lower AUCs indicative of non-linear kinetics. Free access to food increased the plasma AUC∞ by ~4.5-fold at 20 mg/kg in dogs, suggesting presence of food may help in systemic absorption of JD5037 in dogs. Based on the study results, 150 mg/kg/day in rats, and 20 and 75 mg/kg/day doses in male and female dogs, respectively, were determined to be the no-observed-adverse-effect-levels (NOAELs).


Subject(s)
Drugs, Investigational/toxicity , Pyrazoles/toxicity , Receptor, Cannabinoid, CB1/agonists , Seizures/chemically induced , Stereotyped Behavior/drug effects , Sulfonamides/toxicity , Animals , Area Under Curve , Behavior, Animal/drug effects , Disease Models, Animal , Dogs , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drugs, Investigational/therapeutic use , Female , Humans , Investigational New Drug Application , Male , No-Observed-Adverse-Effect Level , Non-alcoholic Fatty Liver Disease/drug therapy , Pyrazoles/pharmacokinetics , Pyrazoles/therapeutic use , Rats , Rats, Sprague-Dawley , Sex Factors , Sulfonamides/pharmacokinetics , Sulfonamides/therapeutic use
15.
Mol Syst Biol ; 13(8): 938, 2017 08 21.
Article in English | MEDLINE | ID: mdl-28827398

ABSTRACT

We performed integrative network analyses to identify targets that can be used for effectively treating liver diseases with minimal side effects. We first generated co-expression networks (CNs) for 46 human tissues and liver cancer to explore the functional relationships between genes and examined the overlap between functional and physical interactions. Since increased de novo lipogenesis is a characteristic of nonalcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC), we investigated the liver-specific genes co-expressed with fatty acid synthase (FASN). CN analyses predicted that inhibition of these liver-specific genes decreases FASN expression. Experiments in human cancer cell lines, mouse liver samples, and primary human hepatocytes validated our predictions by demonstrating functional relationships between these liver genes, and showing that their inhibition decreases cell growth and liver fat content. In conclusion, we identified liver-specific genes linked to NAFLD pathogenesis, such as pyruvate kinase liver and red blood cell (PKLR), or to HCC pathogenesis, such as PKLR, patatin-like phospholipase domain containing 3 (PNPLA3), and proprotein convertase subtilisin/kexin type 9 (PCSK9), all of which are potential targets for drug development.


Subject(s)
Carcinoma, Hepatocellular/genetics , Fatty Acid Synthase, Type I/genetics , Gene Regulatory Networks , Liver Neoplasms/genetics , Non-alcoholic Fatty Liver Disease/genetics , Systems Biology/methods , Animals , Carcinoma, Hepatocellular/drug therapy , Cells, Cultured , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks/drug effects , Hep G2 Cells , Humans , K562 Cells , Liver/chemistry , Liver/drug effects , Liver Neoplasms/drug therapy , Mice , Molecular Targeted Therapy , Non-alcoholic Fatty Liver Disease/drug therapy , Organ Specificity , Protein Interaction Maps , Sequence Analysis, RNA
16.
Diabetes Obes Metab ; 20(3): 698-708, 2018 03.
Article in English | MEDLINE | ID: mdl-29106063

ABSTRACT

AIMS: To determine the specific role of podocyte-expressed cannabinoid-1 receptor (CB1 R) in the development of diabetic nephropathy (DN), relative to CB1 R in other renal cell types. MATERIAL AND METHODS: We developed a mouse model with a podocyte-specific deletion of CB1 R (pCB1Rko) and challenged this model with streptozotocin (STZ)-induced type-1 DN. We also assessed the podocyte response to high glucose in vitro and its effects on CB1 R activation. RESULTS: High glucose exposure for 48 hours led to an increase in CB1 R gene expression (CNR1) and endocannabinoid production in cultured human podocytes. This was associated with podocyte injury, reflected by decreased podocin and nephrin expression. These changes could be prevented by Cnr1-silencing, thus identifying CB1R as a key player in podocyte injury. After 12 weeks of chronic hyperglycaemia, STZ-treated pCB1Rko mice showed elevated blood glucose similar to that of their wild-type littermates. However, they displayed less albuminuria and less podocyte loss than STZ-treated wild-type mice. Unexpectedly, pCB1Rko mice also have milder tubular dysfunction, fibrosis and reduction of cortical microcirculation compared to wild-type controls, which is mediated, in part, by podocyte-derived endocannabinoids acting via CB1 R on proximal tubular cells. CONCLUSIONS: Activation of CB1 R in podocytes contributes to both glomerular and tubular dysfunction in type-1 DN, which highlights the therapeutic potential of peripheral CB1 R blockade.


Subject(s)
Diabetic Nephropathies/physiopathology , Kidney Glomerulus/physiology , Kidney Tubules, Proximal/physiology , Podocytes/metabolism , Receptors, Cannabinoid/deficiency , Animals , Arginase/metabolism , Cell Hypoxia/physiology , Cells, Cultured , Diabetes Mellitus, Experimental/physiopathology , Glucose/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Kidney/blood supply , Membrane Proteins/metabolism , Mice , Microcirculation/physiology , Oxidative Stress/physiology , Receptor, Cannabinoid, CB1/deficiency , Receptor, Cannabinoid, CB1/metabolism
17.
Proc Natl Acad Sci U S A ; 112(1): 285-90, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25535367

ABSTRACT

Glucocorticoids are known to promote the development of metabolic syndrome through the modulation of both feeding pathways and metabolic processes; however, the precise mechanisms of these effects are not well-understood. Recent evidence shows that glucocorticoids possess the ability to increase endocannabinoid signaling, which is known to regulate appetite, energy balance, and metabolic processes through both central and peripheral pathways. The aim of this study was to determine the role of endocannabinoid signaling in glucocorticoid-mediated obesity and metabolic syndrome. Using a mouse model of excess corticosterone exposure, we found that the ability of glucocorticoids to increase adiposity, weight gain, hormonal dysregulation, hepatic steatosis, and dyslipidemia was reduced or reversed in mice lacking the cannabinoid CB1 receptor as well as mice treated with the global CB1 receptor antagonist AM251. Similarly, a neutral, peripherally restricted CB1 receptor antagonist (AM6545) was able to attenuate the metabolic phenotype caused by chronic corticosterone, suggesting a peripheral mechanism for these effects. Biochemical analyses showed that chronic excess glucocorticoid exposure produced a significant increase in hepatic and circulating levels of the endocannabinoid anandamide, whereas no effect was observed in the hypothalamus. To test the role of the liver, specific and exclusive deletion of hepatic CB1 receptor resulted in a rescue of the dyslipidemic effects of glucocorticoid exposure, while not affecting the obesity phenotype or the elevations in insulin and leptin. Together, these data indicate that glucocorticoids recruit peripheral endocannabinoid signaling to promote metabolic dysregulation, with hepatic endocannabinoid signaling being especially important for changes in lipid metabolism.


Subject(s)
Endocannabinoids/metabolism , Glucocorticoids/adverse effects , Metabolic Syndrome/chemically induced , Metabolic Syndrome/metabolism , Animals , Corticosterone/pharmacology , Dyslipidemias/metabolism , Endocannabinoids/administration & dosage , Endocannabinoids/pharmacology , Liver/metabolism , Metabolic Syndrome/pathology , Mice, Inbred C57BL , Obesity/metabolism , Organ Specificity/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/metabolism , Signal Transduction/drug effects
18.
Article in English | MEDLINE | ID: mdl-29790591

ABSTRACT

Cannabinoid-1 receptor (CB1 R) antagonists/inverse agonists have great potential in the treatment of metabolic disorders like dyslipidemia, type 2 diabetes, and nonalcoholic steatohepatitis. Cannabinoid-1 receptor inverse agonists have also been reported to be effective in mitigating fibrotic disorders in murine models. Inducible nitric oxide synthase is another promising target implicated in fibrotic and inflammatory disorders. We have disclosed MRI-1867 as a potent and selective, peripherally acting dual-target inhibitor of the CB1 R and inducible nitric oxide synthase (iNOS). Herein, we report the synthesis of [13 C6 ]-MRI-1867 as a racemate from commercially available chlorobenzene-13 C6 as the starting, stable-isotope label reagent. The racemic [13 C6 ]-MRI-1867 was further processed to the stable-isotope-labeled enantiopure compounds using chiral chromatography. Both racemic [13 C6 ]-MRI-1867 and S-13 C6 -MRI-1867 will be used to quantitate unlabeled S-MRI-1867 during clinical drug metabolism and pharmacokinetics studies and will be used as a liquid chromatography-tandem mass spectrometry bioanalytical standard.

19.
Proc Natl Acad Sci U S A ; 111(50): E5420-8, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25422468

ABSTRACT

Diabetic nephropathy is a major cause of end-stage kidney disease, and overactivity of the endocannabinoid/cannabinoid 1 receptor (CB1R) system contributes to diabetes and its complications. Zucker diabetic fatty (ZDF) rats develop type 2 diabetic nephropathy with albuminuria, reduced glomerular filtration, activation of the renin-angiotensin system (RAS), oxidative/nitrative stress, podocyte loss, and increased CB1R expression in glomeruli. Peripheral CB1R blockade initiated in the prediabetic stage prevented these changes or reversed them when animals with fully developed diabetic nephropathy were treated. Treatment of diabetic ZDF rats with losartan, an angiotensin II receptor-1 (Agtr1) antagonist, attenuated the development of nephropathy and down-regulated renal cortical CB1R expression, without affecting the marked hyperglycemia. In cultured human podocytes, CB1R and desmin gene expression were increased and podocin and nephrin content were decreased by either the CB1R agonist arachydonoyl-2'-chloroethylamide, angiotensin II, or high glucose, and the effects of all three were antagonized by CB1R blockade or siRNA-mediated knockdown of CNR1 (the cannabinoid type 1 receptor gene). We conclude that increased CB1R signaling in podocytes contributes to the development of diabetic nephropathy and represents a common pathway through which both hyperglycemia and increased RAS activity exert their deleterious effects, highlighting the therapeutic potential of peripheral CB1R blockade.


Subject(s)
Diabetes Mellitus, Type 2/complications , Diabetic Nephropathies/metabolism , Models, Biological , Podocytes/metabolism , Receptor, Cannabinoid, CB1/metabolism , Analysis of Variance , Angiotensin II/pharmacology , Animals , Arachidonic Acids/pharmacology , Desmin/metabolism , Diabetic Nephropathies/etiology , Gene Expression Regulation/drug effects , Losartan/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Rats , Rats, Zucker , Receptor, Angiotensin, Type 1/metabolism , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Sulfonamides/chemical synthesis , Sulfonamides/pharmacology
20.
J Labelled Comp Radiopharm ; 60(10): 460-465, 2017 08.
Article in English | MEDLINE | ID: mdl-28545167

ABSTRACT

JD5037 (1) is a potent and selective, peripherally acting inverse agonist of the cannabinoid (CB1 R) receptor. Peripheral CB1 receptor antagonists/inverse agonists have great potential in the treatment of metabolic disorders like type 2 diabetes, obesity, and nonalcoholic steatohepatitis. We report the synthesis of octadeuterated [2 H8 ]-JD5037 (S, S) (8) along with its (S, R) diastereomer (13) from commercially available L-valine-d8 starting material. The [2 H8 ]-JD5037 compound will be used to quantitate unlabeled JD5037 during clinical ADME studies and will be used as an LC-MS/MS bioanalytical standard.


Subject(s)
Deuterium/chemistry , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Sulfonamides/chemistry , Sulfonamides/chemical synthesis , Amides/chemistry , Chemistry Techniques, Synthetic , Models, Molecular , Molecular Conformation , Pyrazoles/metabolism , Receptor, Cannabinoid, CB1/metabolism , Sulfonamides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL