Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Antimicrob Agents Chemother ; 68(4): e0138823, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38376187

ABSTRACT

Phage-antibiotic combinations (PAC) offer a potential solution for treating refractory daptomycin-nonsusceptible (DNS) methicillin-resistant Staphylococcus aureus (MRSA) infections. We examined PAC activity against two well-characterized DNS MRSA strains (C4 and C37) in vitro and ex vivo. PACs comprising daptomycin (DAP) ± ceftaroline (CPT) and a two-phage cocktail (Intesti13 + Sb-1) were evaluated for phage-antibiotic synergy (PAS) against high MRSA inoculum (109 CFU/mL) using (i) modified checkerboards (CB), (ii) 24-h time-kill assays (TKA), and (iii) 168-h ex vivo simulated endocardial vegetation (SEV) models. PAS was defined as a fractional inhibitory concentration ≤0.5 in CB minimum inhibitory concentration (MIC) or a ≥2 log10 CFU/mL reduction compared to the next best regimen in time-kill assays and SEV models. Significant differences between regimens were assessed by analysis of variance with Tukey's post hoc modification (α = 0.05). CB assays revealed PAS with Intesti13 + Sb-1 + DAP ± CPT. In 24-h time-kill assays against C4, Intesti13 + Sb-1 + DAP ± CPT demonstrated synergistic activity (-Δ7.21 and -Δ7.39 log10 CFU/mL, respectively) (P < 0.05 each). Against C37, Intesti13 + Sb-1 + CPT ± DAP was equally effective (-Δ7.14 log10 CFU/mL each) and not significantly different from DAP + Intesti13 + Sb-1 (-Δ6.65 log10 CFU/mL). In 168-h SEV models against C4 and C37, DAP ± CPT + the phage cocktail exerted synergistic activities, significantly reducing bio-burdens to the detection limit [2 log10 CFU/g (-Δ7.07 and -Δ7.11 log10 CFU/g, respectively)] (P < 0.001). At 168 h, both models maintained stable MICs, and no treatment-emergent phage resistance occurred with DAP or DAP + CPT regimens. The two-phage cocktail demonstrated synergistic activity against two DNS MRSA isolates in combination with DAP + CPT in vitro and ex vivo. Further in vivo PAC investigations are needed.


Subject(s)
Daptomycin , Methicillin-Resistant Staphylococcus aureus , Daptomycin/pharmacology , Cephalosporins/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Ceftaroline , Microbial Sensitivity Tests
2.
Clin Infect Dis ; 76(3): e1444-e1455, 2023 02 08.
Article in English | MEDLINE | ID: mdl-35982631

ABSTRACT

BACKGROUND: Vancomycin (VAN)-associated acute kidney injury (AKI) is increased when VAN is combined with certain beta-lactams (BLs) such as piperacillin-tazobactam (TZP) but has not been evaluated with ceftolozane-tazobactam (C/T). Our aim was to investigate the AKI incidence of VAN in combination with C/T (VAN/C/T) compared with VAN in combination to TZP (VAN-TZP). METHODS: We conducted a multicenter, observational, comparative study across the United States. The primary analysis was a composite outcome of AKI and risk, injury, failure, loss, end stage renal disease; Acute Kidney Injury Network; or VAN-induced nephrotoxicity according to the consensus guidelines. Multivariable logistic regression analysis was conducted to adjust for confounding variables and stratified Kaplan-Meir analysis to assess the time to nephrotoxicity between the 2 groups. RESULTS: We included VAN/C/T (n = 90) and VAN-TZP (n = 284) at an enrollment ratio of 3:1. The primary outcome occurred in 12.2% vs 25.0% in the VAN-C/T and VAN-TZP groups, respectively (P = .011). After adjusting for confounding variables, VAN-TZP was associated with increased odds of AKI compared with VAN-C/T; with an adjusted odds ratio of 3.308 (95% confidence interval, 1.560-6.993). Results of the stratified Kaplan-Meir analysis with log-rank time-to-nephrotoxicity analysis indicate that time to AKI was significantly shorter among patients who received VAN-TZP (P = .004). Cox proportional hazards analysis demonstrated that TZP was consistent with the primary analysis (P = .001). CONCLUSIONS: Collectively, our results suggest that the AKI is not likely to be related to tazobactam but rather to piperacillin, which is a component in VAN-TZP but not in VAN-C/T.


Subject(s)
Acute Kidney Injury , Drug-Related Side Effects and Adverse Reactions , Humans , Vancomycin/adverse effects , Anti-Bacterial Agents/adverse effects , beta-Lactams/adverse effects , Retrospective Studies , Piperacillin, Tazobactam Drug Combination/adverse effects , Tazobactam/adverse effects , Piperacillin/adverse effects , Acute Kidney Injury/chemically induced , Acute Kidney Injury/epidemiology , Acute Kidney Injury/drug therapy , Drug Therapy, Combination
3.
Antimicrob Agents Chemother ; 67(11): e0072823, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37877697

ABSTRACT

Pseudomonas aeruginosa-associated infective endocarditis represents difficult-to-treat, deep-seated infections. Phage-antibiotic combinations have shown to eradicate multi-drug resistant (MDR) P. aeruginosa, limit the development of phage resistance, and restore antibiotic sensitivity. The objective of this study was to evaluate the activity of phage-ciprofloxacin (CIP) combinations in 4-day ex vivo simulated endocardial vegetation (SEV) models against drug-resistant P. aeruginosa isolates. Two P. aeruginosa isolates, extensively drug-resistant AR351 and MDR I0003-1, were selected for their drug resistance and sensitivity to phage. Three phages [LL-5504721-AH (LL), E2005-C (EC), and 109] and CIP were evaluated alone and in combination for their activity and influence on drug and phage resistance using 24-h time-kill analysis. The three-phage cocktail (q24h) in combination with CIP (400 mg q12h) was then tested in dynamic 4-day ex vivo SEV models, with reduction of log10 CFU/mL compared using ANOVA with Bonferroni analysis. Compared to other combinations, CIP-LL-EC-109 demonstrated synergistic and bactericidal activity from starting CFU/g against AR351 and I0003-1 (-Δ5.65 and 6.60 log10 CFU/g, respectively; P < 0.001). Additionally, CIP-LL-EC-109 mitigated phage resistance, while all other therapies had a high degree of resistance to >1 phages, and all phage-containing regimens prevented CIP mean inhibitory concentration increases compared to CIP alone for both AR351 and I0003-1 at 96 h.


Subject(s)
Bacteriophages , Pseudomonas Infections , Humans , Ciprofloxacin/pharmacology , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Pseudomonas Infections/therapy
4.
Antimicrob Agents Chemother ; 67(6): e0131722, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37222591

ABSTRACT

Biofilm-associated infections lead to substantial morbidity. Omadacycline (OMC) is a novel aminomethylcycline with potent in vitro activity against Staphylococcus aureus and Staphylococcus epidermidis, but data surrounding its use in biofilm-associated infections are lacking. We investigated the activity of OMC alone and in combination with rifampin (RIF) against 20 clinical strains of staphylococci in multiple in vitro biofilm analyses, including an in vitro pharmacokinetic/pharmacodynamic (PK/PD) CDC biofilm reactor (CBR) model (simulating human exposures). The observed MICs for OMC demonstrated potent activity against the evaluated strains (0.125 to 1 mg/L), with an increase of MICs generally observed in the presence of biofilm (0.25 to >64 mg/L). Furthermore, RIF was shown to reduce OMC biofilm MICs (bMICs) in 90% of strains, and OMC plus RIF combination in biofilm time-kill analyses (TKAs) exhibited synergistic activity in most of the strains. Within the PK/PD CBR model, OMC monotherapy primarily displayed bacteriostatic activity, while RIF monotherapy generally exhibited initial bacterial eradication, followed by rapid regrowth likely due to the emergence of RIF resistance (RIF bMIC, >64 mg/L). However, the combination of OMC plus RIF produced rapid and sustained bactericidal activity in nearly all the strains (3.76 to 4.03 log10 CFU/cm2 reductions from starting inoculum in strains in which bactericidal activity was reached). Furthermore, OMC was shown to prevent the emergence of RIF resistance. Our data provide preliminary evidence that OMC in combination with RIF could be a viable option for biofilm-associated infections with S. aureus and S. epidermidis. Further research involving OMC in biofilm-associated infections is warranted.


Subject(s)
Rifampin , Staphylococcal Infections , Humans , Rifampin/pharmacology , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Staphylococcus epidermidis , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Biofilms , Microbial Sensitivity Tests
5.
Antimicrob Agents Chemother ; 67(11): e0057823, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37855639

ABSTRACT

Biofilm-producing Pseudomonas aeruginosa infections pose a severe threat to public health and are responsible for high morbidity and mortality. Phage-antibiotic combinations (PACs) are a promising strategy for combatting multidrug-resistant (MDR), extensively drug-resistant (XDR), and difficult-to-treat P. aeruginosa infections. Ten MDR/XDR P. aeruginosa strains and five P. aeruginosa-specific phages were genetically characterized and evaluated based upon their antibiotic susceptibilities and phage sensitivities. Two selected strains, AR351 (XDR) and I0003-1 (MDR), were treated singly and in combination with either a broad-spectrum or narrow-spectrum phage, phage EM-T3762627-2_AH (EM), or 14207, respectively, and bactericidal antibiotics of five classes in biofilm time-kill analyses. Synergy and/or bactericidal activity was demonstrated with all PACs against one or both drug-resistant P. aeruginosa strains (average reduction: -Δ3.32 log10 CFU/cm2). Slightly improved ciprofloxacin susceptibility was observed in both strains after exposure to phages (EM and 14207) in combination with ciprofloxacin and colistin. Based on phage cocktail optimization with four phages (EM, 14207, E20050-C (EC), and 109), we identified several effective phage-antibiotic cocktails for further analysis in a 4-day pharmacokinetic/pharmacodynamic in vitro biofilm model. Three-phage cocktail, EM + EC + 109, in combination with ciprofloxacin demonstrated the greatest biofilm reduction against AR351 (-Δ4.70 log10 CFU/cm2 from baseline). Of remarkable interest, the addition of phage 109 prevented phage resistance development to EM and EC in the biofilm model. PACs can demonstrate synergy and offer enhanced eradication of biofilm against drug-resistant P. aeruginosa while preventing the emergence of resistance.


Subject(s)
Bacteriophages , Pseudomonas Infections , Humans , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Ciprofloxacin/pharmacology , Pseudomonas Infections/drug therapy , Biofilms
6.
Antimicrob Agents Chemother ; 66(10): e0064622, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36073943

ABSTRACT

This objective of this study was to compare clinical outcomes in hospitalized patients with Pseudomonas aeruginosa pneumonia (PNA) or bloodstream infection (BSI) receiving beta-lactam antibiotic (BLA) infusions with and without the guidance of therapeutic drug monitoring (TDM). A retrospective, parallel cohort study was conducted at two academic medical centers between December 2015 and January 2020, UF Shands Gainesville, which uses BLA TDM for select patients (BLA TDM), and UF Health Jacksonville, which does not use BLA TDM (No-BLA TDM). All hospitalized adult patients with respiratory or blood culture positive for P. aeruginosa who met diagnosis criteria for lower respiratory tract infection with a positive P. aeruginosa respiratory culture and who received ≥48 h of intravenous BLA with in vitro susceptibility within 72 h of positive culture collection were included. The primary outcome was a composite of presumed treatment failure defined as the presence of any of the following from index-positive P. aeruginosa culture collection to the end of BLA therapy: all-cause mortality, escalation of and/or additional antimicrobial therapy for P. aeruginosa infection after 48 h of treatment with susceptible BLA due to worsening clinical status, or transfer to a higher level of care (i.e., the intensive care unit [ICU]). Analyses were adjusted for possible confounding with inverse probability of treatment weighting (IPTW). Two-hundred patients were included (BLA TDM, n = 95; No-BLA TDM, n = 105). In IPTW-adjusted analysis of the primary composite endpoint, BLA TDM demonstrated a significant decrease in presumed treatment failure compared to No-BLA TDM (adjusted odds ratio [aOR] 0.037, 95% confidence interval [CI] [0.013 to 0.107]; P < 0.001). BLA TDM had more 30-, 60- and 90-day infection-related readmissions ([aOR], 11.301, 95% CI (3.595 to 35.516); aOR 10.389, 95% CI [2.496 to 43.239], and aOR 24.970, 95% CI [6.703 to 93.028]) in IPTW analyses. For both unadjusted and IPTW-adjusted cohorts, there was no significant difference in hospital and ICU length of stay, adverse effects while on BLA, or microbiological eradication between BLA TDM and No-BLA TDM. In hospitalized adult patients with P. aeruginosa PNA or BSI, the use of TDM-guided BLA infusions decreased the odds of presumed treatment failure compared to patients receiving BLA infusions without TDM guidance. Future studies should evaluate BLA TDM impact on readmission.


Subject(s)
Pneumonia , Pseudomonas Infections , Sepsis , Adult , Humans , Pseudomonas aeruginosa , Drug Monitoring , Retrospective Studies , Cohort Studies , Anti-Bacterial Agents/adverse effects , Monobactams/pharmacology , Pneumonia/drug therapy , Sepsis/drug therapy , Pseudomonas Infections/drug therapy
7.
Microbiol Spectr ; 12(4): e0321223, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38411110

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) causes biofilm-related medical device infections. Phage-antibiotic combinations offer potential therapy due to proven in vitro antibiofilm efficacy. We evaluated phage-antibiotic synergy against biofilms using modified checkerboard and 24-h time-kill assays. Humanized-simulated daptomycin (DAP) (10, 8, and 6 mg/kg q24h) and ceftaroline (CPT) (600 mg q12h) were combined with Intesti13, Sb-1, and Romulus phages (tMOI 1, q12h). Assays were conducted in 168-h biofilm reactor models against DAP non-susceptible (DNS) vancomycin intermediate S. aureus (VISA) MRSA D712 and DAP-susceptible MRSA 8014. Synergistic activity and bactericidal activity were defined as ≥2log10 CFU/mL reduction from antibiotic-only regimens and ≥3log10 CFU/mL decrease from baseline at 24 h. Differences were analyzed by one-way analysis of variance with Tukey's post hoc test (P ≤ 0.05 is considered significant). Surviving bacteria were examined for antibiotic minimum biofilm inhibitory concentration (MBIC) changes and phage susceptibility. In 168-h biofilm models, humanized DAP 10 mg/kg + CPT, combined with a 2-phage cocktail (Intesti13 + Sb-1) against D712, and a 3-phage cocktail (Intesti13 + Sb-1 + Romulus) against 8014, demonstrated synergistic bactericidal activity. At 168 h, bacteria were minimally detectable [2log10 CFU/cm2 (-Δ4.23 and -Δ4.42 log10 CFU/cm2; both P < 0.001)]. Antibiotic MBIC remained unchanged compared to baseline across various time points. None of the tested bacteria at 168 h exhibited complete phage resistance. This study reveals bactericidal efficacy of DAP + CPT with 2-phage and 3-phage cocktails against DNS VISA and MRSA isolates (D712 and 8014) in biofilm models, maintaining susceptibility. Further research is needed for diverse strains and durations, aligning with infection care. IMPORTANCE: The prevalence of biofilm-associated medical device infections caused by methicillin-resistant Staphylococcus aureus (MRSA) presents a pressing medical challenge. The latest research demonstrates the potential of phage-antibiotic combinations (PACs) as a promising solution, notably in vitro antibiofilm efficacy. By adopting modified checkerboard and 24-h time-kill assays, the study investigated the synergistic action of phages combined with humanized-simulated doses of daptomycin (DAP) and ceftaroline (CPT). The results were promising: a combination of DAP, CPT, and either a 2-phage or 3-phage cocktail effectively exhibited bactericidal activity against both DAP non-susceptible vancomycin intermediate S. aureus MRSA and DAP-susceptible MRSA strains within 168-h biofilm models. Moreover, post-treatment evaluations revealed no discernible rise in antibiotic resistance or complete phage resistance. This pioneering work suggests the potential of PACs in addressing MRSA biofilm infections, setting the stage for further expansive research tailored to diverse bacterial strains and treatment durations.


Subject(s)
Benzimidazoles , Carboxylic Acids , Daptomycin , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Anti-Bacterial Agents/pharmacology , Daptomycin/pharmacology , Staphylococcus aureus , Cephalosporins/pharmacology , Ceftaroline , Biofilms , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology
8.
J Am Dent Assoc ; 155(5): 379-389, 2024 May.
Article in English | MEDLINE | ID: mdl-38520419

ABSTRACT

BACKGROUND: Dental appointments offer an opportunity to evaluate a documented penicillin (PCN) allergy and determine whether the patient might be a candidate for medical reassessment of their allergy. The authors gathered feedback on the Penicillin Allergy Reassessment for Treatment Improvement (PARTI) tool, designed to enhance dentist-patient communications regarding PCN allergies. METHODS: From January 2022 through May 2023, the authors conducted a mixed-methods study, collecting focus group data from patients with PCN allergies and surveying health care workers (HCWs) regarding the PARTI tool. Feedback focused on reassessment procedures, patient-centered allergy information, and medical records updates. Thematic analysis was used for focus group data. RESULTS: The study included 15 patients in focus groups and 50 HCW survey respondents representing diverse US regions. Patient demographic characteristics included varied races, the mean age was 52 years, and most of the patients were female (53.3%). Most patients had health care interactions within the preceding year, at which 86.6% of patients were asked about drug allergies. HCW respondents primarily consisted of pharmacists (30%) and dentists, dental hygienists, and dental assistants (28%). Feedback on the PARTI tool was constructive, with both patients and HCWs recognizing its potential benefits and providing insights for improvement. Many HCWs (68%) highlighted the importance of step 3 of the PARTI tool, that is, the section on PCN allergy testing. Feedback from participants was incorporated into the final PARTI tool. CONCLUSIONS: Patient and HCW feedback on the PARTI tool was used to finalize a tool for the dental office to provide to patients who are candidates for PCN allergy reassessment. The feedback will also be used to inform an upcoming pilot study in US dental offices, focused on the process for PCN allergy reassessment and health record documentation. PRACTICAL IMPLICATIONS: Deploying the PARTI tool in dental offices is pivotal, as mislabeling patients with PCN allergies could have severe consequences, such as hindering the prescription of lifesaving antibiotics for conditions like endocarditis, in the future. This implementation not only enhances communication between dentists and patients, but it is also crucial for ensuring improved patient safety and maintaining accurate medical records among health care settings.


Subject(s)
Drug Hypersensitivity , Penicillins , Humans , Female , Penicillins/adverse effects , Male , Middle Aged , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/therapeutic use , Dental Offices , Focus Groups , Adult , Drug Labeling
9.
Microbiol Spectr ; : e0042724, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39082827

ABSTRACT

In the era of antimicrobial resistance, phage-antibiotic combinations offer a promising therapeutic option, yet research on their synergy and antagonism is limited. This study aims to assess these interactions, focusing on protein synthesis inhibitors and cell envelope-active agents against multidrug-resistant bacterial strains. We evaluated synergistic and antagonistic interactions in multidrug-resistant Staphylococcus aureus, Enterococcus faecium, and Pseudomonas aeruginosa strains. Phages were combined with protein synthesis inhibitors [linezolid (LZD), minocycline (MIN), gentamicin (GEN), and azithromycin (AZM)] or cell envelope-active agents [daptomycin (DAP), ceftaroline (CPT), and cefepime (FEP)]. Modified checkerboard minimum inhibitory concentration assays and 24-h time-kill analyses were conducted, alongside one-step growth curves to analyze phage growth kinetics. Statistical comparisons used one-way analysis of variance (ANOVA) and the Tukey test (P < 0.05). In the checkerboard and 24-h time-kill analyses (TKA) of S. aureus and E. faecium, phage-LZD and phage-MIN combinations were antagonistic (FIC > 4) while phage-DAP and phage-CPT were synergistic (FIC 0.5) (ANOVA range of mean differences 0.52-2.59 log10 CFU/mL; P < 0.001). For P. aeruginosa, phage-AZM was antagonistic (FIC > 4), phage-GEN was additive (FIC = 1), and phage-FEP was synergistic (ANOVA range of mean differences 1.04-1.95 log10 CFU/mL; P < 0.001). Phage growth kinetics were altered in the presence of LZD and MIN against S. aureus and in the presence of LZD against a single E. faecium strain (HOU503). Our findings indicate that select protein synthesis inhibitors may induce phage-antibiotic antagonism. However, this antagonism may not solely stem from changes in phage growth kinetics, warranting further investigation into the complex interplay among strains, phage attributes, and antibiotic mechanisms affecting bacterial inhibition.IMPORTANCEIn the face of escalating antimicrobial resistance, combining phages with antibiotics offers a promising avenue for treating infections unresponsive to traditional antibiotics. However, while studies have explored synergistic interactions, less attention has been given to potential antagonism and its impact on phage growth kinetics. This research evaluates the interplay between phages and antibiotics, revealing both synergistic and antagonistic patterns across various bacterial strains and shedding light on the complex dynamics that influence treatment efficacy. Understanding these interactions is crucial for optimizing combination therapies and advancing phage therapy as a viable solution for combating antimicrobial resistance.

10.
Microbiol Spectr ; 12(2): e0310823, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38206034

ABSTRACT

Multi-drug resistant gram-negative bacteria present a significant global health threat. Cefiderocol (CFDC), a siderophore cephalosporin, has shown potential in combating this threat, but with the currently available data, its role in therapy remains poorly defined. This multi-center, retrospective cohort study evaluated the real-world application of CFDC across six U.S. medical centers from January 2018 to May 2023. Patients aged ≥18 years and who had received ≥72 hours of CFDC were included. The primary outcome was a composite of clinical success: survival at 30 days, absence of symptomatic microbiologic recurrence at 30 days following CFDC treatment initiation, and resolution of signs and symptoms. Secondary outcomes included time to CFDC therapy and on-treatment non-susceptibility to CFDC. A total of 112 patients were included, with median (interquartile range [IQR]) APACHE II scores of 15 (19-18). Clinical success was observed in 68.8% of patients, with a mortality rate of 16.1% and comparable success rates across patients infected with carbapenem-resistant gram-negative infections. The most common isolated organisms were Pseudomonas aeruginosa (61/112, 54.5%, of which 55/61 were carbapenem-resistant) and carbapenem-resistant Acinetobacter baumannii (32/112, 28.6%). Median (IQR) time to CFDC therapy was 77 (14-141) hours. Two patients experienced a non-anaphylactic rash as an adverse drug reaction. On-treatment non-susceptibility to CFDC was found in six patients, notably due to P. aeruginosa and A. baumannii.IMPORTANCECFDC was safe and clinically effective as a monotherapy or in combination in treating a variety of carbapenem-resistant gram-negative infections. Further prospective studies are warranted to confirm these findings.


Subject(s)
Anti-Bacterial Agents , Cefiderocol , Humans , Adolescent , Adult , Anti-Bacterial Agents/pharmacology , Retrospective Studies , Cephalosporins/pharmacology , Carbapenems/pharmacology , Gram-Negative Bacteria , Microbial Sensitivity Tests
11.
Microbiol Spectr ; 12(1): e0235123, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38018984

ABSTRACT

IMPORTANCE: The rise of multidrug-resistant (MDR) pathogens, especially MDR Gram-negatives, poses a significant challenge to clinicians and public health. These resilient bacteria have rendered many traditional antibiotics ineffective, underscoring the urgency for innovative therapeutic solutions. Eravacycline, a broad-spectrum fluorocycline tetracycline antibiotic approved by the FDA in 2018, emerges as a promising candidate, exhibiting potential against a diverse array of MDR bacteria, including Gram-negative, Gram-positive, anaerobic strains, and Mycobacterium. However, comprehensive data on its real-world application remain scarce. This retrospective cohort study, one of the largest of its kind, delves into the utilization of eravacycline across various infectious conditions in the USA during its initial 4 years post-FDA approval. Through assessing clinical, microbiological, and tolerability outcomes, the research offers pivotal insights into eravacycline's efficacy in addressing the pressing global challenge of MDR bacterial infections.


Subject(s)
Anti-Bacterial Agents , Tetracyclines , Humans , Retrospective Studies , Tetracyclines/therapeutic use , Tetracyclines/pharmacology , Anti-Bacterial Agents/adverse effects , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Outcome Assessment, Health Care , Gram-Negative Bacteria
12.
Open Forum Infect Dis ; 10(9): ofad454, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37720698

ABSTRACT

Background: Pseudomonas aeruginosa is a leading cause of hospital-acquired and ventilator-associated bacterial pneumonia (HABP/VABP). Novel ß-lactam/ß-lactamase inhibitor (BL/BLI) combinations are often used for these infections; however, limited data exist to guide the dosing of BL/BLI in patients who are morbidly obese. Thus, we sought to evaluate the clinical and safety endpoints of patients who are morbidly obese (body mass index ≥35 kg/m2) and non-morbidly obese (<35 kg/m2) and receiving BL/BLI for P aeruginosa HABP/VABP. Methods: This retrospective study was based on a cohort of patients hospitalized at 2 urban academic medical centers in Detroit, Michigan, from August 2014 through February 2021 with P aeruginosa HABP/VABP who were receiving BL/BLI (ceftazidime/avibactam, ceftolozane/tazobactam, or meropenem/vaborbactam) for ≥72 continuous hours. The primary endpoint was presumed treatment failure, defined as the presence of all-cause in-hospital mortality or the continuation of infectious symptoms. Analyses were adjusted for possible confounding with inverse probability of treatment weighting. Multivariable regression was used to identify predictors of treatment failure. Results: In total, 285 patients with HABP (61.4%) and/or VABP (56.1%) were enrolled (morbidly obese, n = 95; non-morbidly obese, n = 190). The median Acute Physiology and Chronic Health Evaluation II score was 23 (IQR, 13-26), and 60% of patients were admitted to the intensive care unit at index culture collection. Patients who were morbidly obese demonstrated significantly greater odds of presumed treatment failure vs those who were non-morbidly obese (58.9% vs 37.9%, respectively; adjusted odds ratio, 1.675 [95% CI, 1.465-1.979]). In multivariable analysis, morbid obesity (1.06; 95% CI, 1.02-1.79), prolonged time to BL/BLI initiation (1.47; 95% CI, 1.28-2.66), renal dose-adjusted BL/BLI in the first 48 hours of therapy (1.12; 95% CI, 1.09-1.75), and continuous renal replacement therapy during BL/BLI therapy (1.35; 95% CI, 1.06-1.68) were independently associated with increased odds of presumed treatment failure. Conclusions: Among hospitalized patients receiving BL/BLI for P aeruginosa HABP/VABP, those who were morbidly obese had significantly greater odds of presumed treatment failure when compared with those who were non-morbidly obese.

13.
Pharmacotherapy ; 43(8): 833-846, 2023 08.
Article in English | MEDLINE | ID: mdl-37199104

ABSTRACT

Stenotrophomonas maltophilia is an opportunistic pathogen and frequent cause of serious nosocomial infections. Patient populations at greatest risk for these infections include the immunocompromised and those with chronic respiratory illnesses and prior antibiotic exposure, notably to carbapenems. Its complex virulence and resistance profile drastically limit available antibiotics, and incomplete breakpoint and pharmacokinetic/pharmacodynamic (PK/PD) data to inform dose optimization further complicates therapeutic approaches. Clinical comparison data of first-line agents, including trimethoprim-sulfamethoxazole (TMP-SMX), quinolones, and minocycline, are limited to conflicting observational data with no clear benefit of a single agent or combination therapy. Newer antibiotic approaches, including cefiderocol and aztreonam- avibactam, are promising alternatives for extensively drug-resistant isolates; however, clinical outcomes data are needed. The potential clinical utility of bacteriophage for compassionate use in treating S. maltophilia infections remains to be determined since data is limited to in-vitro and sparse in-vivo work. This article provides a review of available literature for S. maltophilia infection management focused on related epidemiology, resistance mechanisms, identification, susceptibility testing, antimicrobial PK/PD, and emerging therapeutic strategies.


Subject(s)
Anti-Infective Agents , Gram-Negative Bacterial Infections , Stenotrophomonas maltophilia , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology , Trimethoprim, Sulfamethoxazole Drug Combination/therapeutic use , Minocycline , Anti-Infective Agents/therapeutic use , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/epidemiology , Microbial Sensitivity Tests
14.
Pharmacotherapy ; 43(6): 502-513, 2023 06.
Article in English | MEDLINE | ID: mdl-37052117

ABSTRACT

Carbapenem-resistant Acinetobacter baumannii (CRAB) is a difficult-to-treat nosocomial pathogen responsible for significant morbidity and mortality. Sulbactam-durlobactam (SUL-DUR), formerly ETX2514SUL, is a novel ß-lactam-ß-lactamase inhibitor designed specifically for the treatment of CRAB infections. The United States Food and Drug Administration (FDA) fast-track approval of SUL-DUR for the treatment of CRAB infections is currently pending after completion of the phase III ATTACK trial, which compared SUL-DUR to colistin, both in combination with imipenem-cilastatin (IMI) for patients with CRAB-associated hospital-acquired bacterial pneumonia, ventilator-associated pneumonia, and bacteremia. The results of this trial demonstrated that SUL-DUR was non-inferior to colistin for CRAB while also possessing a much more favorable safety profile. SUL-DUR was well-tolerated with the most common side effects being headache, nausea, and injection-site phlebitis. With the current landscape of limited effective treatment options for CRAB infections, SUL-DUR represents a promising therapeutic option for the treatment of these severe infections. This review will discuss the pharmacology, spectrum of activity, pharmacokinetics/pharmacodynamics, in vitro and clinical studies, safety, dosing, administration, as well as the potential role in therapy for SUL-DUR.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , United States , Humans , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/therapeutic use , Anti-Bacterial Agents/adverse effects , Colistin/pharmacology , Lactams/pharmacology , Lactams/therapeutic use , Carbapenems/pharmacology , Carbapenems/therapeutic use , Acinetobacter Infections/drug therapy
15.
Open Forum Infect Dis ; 10(3): ofad034, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36968970

ABSTRACT

Background: Limited data suggest that serious infections caused by Enterobacterales with a moderate to high risk of clinically significant AmpC production can be successfully treated with cefepime if the cefepime minimum inhibitory concentration (MIC) is ≤2 µg/mL. However, isolates with a cefepime-susceptible dose-dependent (SDD) MIC of 4-8 µg/mL should receive a carbapenem due to target attainment and extended-spectrum ß-lactamase (ESBL) concerns. Methods: This was a retrospective cohort study of hospitalized patients with E. cloacae, K. aerogenes, or C. freundii bacteremia from January 2015 to March 2022 receiving high-dose cefepime or a carbapenem. Cox regression models were used with incorporation of inverse probability of treatment weighting and time-varying covariates. Results: Of the 315 patients included, 169 received cefepime and 146 received a carbapenem (ertapenem n = 90, meropenem n = 56). Cefepime was not associated with an increased risk of 30-day mortality compared with carbapenem therapy (adjusted hazard ratio [aHR], 1.45; 95% CI, 0.79-2.14), which was consistent for patients with cefepime SDD isolates (aHR, 1.19; 95% CI, 0.52-1.77). Multivariable weighted Cox models identified Pitt bacteremia score >4 (aHR, 1.41; 95% CI, 1.04-1.92), deep infection (aHR, 2.27; 95% CI, 1.21-4.32), and ceftriaxone-resistant AmpC-E (aHR, 1.32; 95% CI, 1.03-1.59) to be independent predictors associated with increased mortality risk, while receipt of prolonged-infusion ß-lactam was protective (aHR, 0.67; 95% CI, 0.40-0.89). Conclusions: Among patients with bacteremia caused by Enterobacterales with moderate to high risk of clinically significant AmpC production, these data demonstrate similar risk of 30-day mortality for high-dose cefepime or a carbapenem as definitive ß-lactam therapy.

16.
Microbiol Spectr ; 11(3): e0491822, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37199616

ABSTRACT

Phage therapy has gained attention due to the spread of antibiotic-resistant bacteria and narrow pipeline of novel antibiotics. Phage cocktails are hypothesized to slow the overall development of resistance by challenging the bacteria with more than one phage. Here, we have used a combination of plate-, planktonic-, and biofilm-based screening assays to try to identify phage-antibiotic combinations that will eradicate preformed biofilms of Staphylococcus aureus strains that are otherwise difficult to kill. We have focused on methicillin-resistant S aureus (MRSA) strains and their daptomycin-nonsusceptible vancomycin-intermediate (DNS-VISA) derivatives to understand whether the phage-antibiotic interactions are altered by the changes associated with evolution from MRSA to DNS-VISA (which is known to occur in patients receiving antibiotic therapy). We evaluated the host range and cross-resistance patterns of five obligately lytic S. aureus myophages to select a three-phage cocktail. We screened these phages for their activity against 24-h bead biofilms and found that biofilms of two strains, D712 (DNS-VISA) and 8014 (MRSA), were the most resistant to killing by single phages. Specifically, even initial phage concentrations of 107 PFU per well could not prevent visible regrowth of bacteria from the treated biofilms. However, when we treated biofilms of the same two strains with phage-antibiotic combinations, we prevented bacterial regrowth when using up to 4 orders of magnitude less phage and antibiotic concentrations that were lower than our measured minimum biofilm inhibitory concentration. We did not see a consistent association between phage activity and the evolution of DNS-VISA genotypes in this small number of bacterial strains. IMPORTANCE The extracellular polymeric matrix of biofilms presents an impediment to antibiotic diffusion, facilitating the emergence of multidrug-resistant populations. While most phage cocktails are designed for the planktonic state of bacteria, it is important to take the biofilm mode of growth (the predominant mode of bacterial growth in nature) into consideration, as it is unclear how interactions between any specific phage and its bacterial hosts will depend on the physical properties of the growth environment. In addition, the extent of bacterial sensitivity to any given phage may vary from the planktonic to the biofilm state. Therefore, phage-containing treatments targeting biofilm infections such as catheters and prosthetic joint material may not be merely based on host range characteristics. Our results open avenues to new questions regarding phage-antibiotic treatment efficiency in the eradication of topologically structured biofilm settings and the extent of eradication efficacy relative to the single agents in biofilm populations.


Subject(s)
Bacteriophages , Daptomycin , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus , Bacteriophages/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biofilms , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Vancomycin , Microbial Sensitivity Tests
17.
Microbiol Spectr ; 11(1): e0264722, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36622246

ABSTRACT

The Centers for Disease Control and Prevention (CDC) categorized carbapenem-resistant Enterobacterales (CRE) infections as an "urgent" health care threat requiring public attention and research. Certain patients with CRE infections may be at higher risk for poor clinical outcomes than others. Evidence on risk or protective factors for CRE infections are warranted in order to determine the most at-risk populations, especially with newer beta-lactam/beta-lactamase inhibitor (BL/BLI) antibiotics available to treat CRE. We aimed to identify specific variables involved in CRE treatment that are associated with clinical failure (either 30-day mortality, 30-day microbiologic recurrence, or clinical worsening/failure to improve throughout antibiotic treatment). We conducted a retrospective, observational cohort study of hospitalized patients with CRE infection sampled from 2010 to 2020 at two medical systems in Detroit, Michigan. Patients were included if they were ≥18 years old and culture positive for an organism in the Enterobacterales order causing clinical infection with in vitro resistance by Clinical and Laboratory Standards Institute (CLSI) breakpoints to at least one carbapenem. Overall, there were 140 confirmed CRE infections of which 39% had clinical failure. The most common infection sources were respiratory (38%), urinary (20%), intra-abdominal (16%), and primary bacteremia (14%). A multivariable logistic regression model was developed to identify statistically significant associated predictors with clinical failure, and they included Sequential Organ Failure Assessment (SOFA) score (adjusted odds ratio [aOR], 1.18; 95% confidence interval [CI], 1.06 to 1.32), chronic dialysis (aOR, 5.86; 95% CI, 1.51-22.7), and Klebsiella pneumoniae in index culture (aOR, 3.09; 95% CI, 1.28 to 7.47). Further research on CRE infections is needed to identify best practices to promote treatment success. IMPORTANCE This work compares carbapenem-resistant Enterobacterales (CRE) infections using patient, clinical, and treatment variables to understand which characteristics are associated with the highest risk of clinical failure. Knowing which risk factors are associated with CRE infection failure can provide clinicians better prognostic and targeted interventions. Research can also further investigate why certain risk factors cause more clinical failure and can help develop treatment strategies to mitigate associated risk factors.


Subject(s)
Carbapenems , Enterobacteriaceae Infections , Humans , Adolescent , Carbapenems/pharmacology , Carbapenems/therapeutic use , Retrospective Studies , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/microbiology , Anti-Bacterial Agents/adverse effects , beta-Lactamase Inhibitors , Treatment Failure , Risk Factors , Microbial Sensitivity Tests
18.
Microbiol Spectr ; 11(4): e0034023, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37338375

ABSTRACT

Enterococcus faecium is a difficult-to-treat pathogen with emerging resistance to most clinically available antibiotics. Daptomycin (DAP) is the standard of care, but even high DAP doses (12 mg/kg body weight/day) failed to eradicate some vancomycin-resistant strains. Combination DAP-ceftaroline (CPT) may increase ß-lactam affinity for target penicillin binding proteins (PBP); however, in a simulated endocardial vegetation (SEV) pharmacokinetic/pharmacodynamic (PK/PD) model, DAP-CPT did not achieve therapeutic efficacy against a DAP-nonsusceptible (DNS) vancomycin-resistant E. faecium (VRE) isolate. Phage-antibiotic combinations (PAC) have been proposed for resistant high-inoculum infections. We aimed to identify PAC with maximum bactericidal activity and prevention/reversal of phage and antibiotic resistance in an SEV PK/PD model against DNS isolate R497. Phage-antibiotic synergy (PAS) was evaluated with modified checkerboard MIC and 24-h time-kill analyses (TKA). Human-simulated antibiotic doses of DAP and CPT with phages NV-497 and NV-503-01 were then evaluated in 96-h SEV PK/PD models against R497. Synergistic and bactericidal activity was identified with the PAC of DAP-CPT combined with phage cocktail NV-497-NV-503-01, demonstrating a significant reduction in viability down to 3-log10 CFU/g (-Δ, 5.77-log10 CFU/g; P < 0.001). This combination also demonstrated isolate resensitization to DAP. Evaluation of phage resistance post-SEV demonstrated prevention of phage resistance for PACs containing DAP-CPT. Our results provide novel data highlighting bactericidal and synergistic activity of PAC against a DNS E. faecium isolate in a high-inoculum ex vivo SEV PK/PD model with subsequent DAP resensitization and prevention of phage resistance. IMPORTANCE Our study supports the additional benefit of standard-of-care antibiotics combined with a phage cocktail compared to antibiotic alone against a daptomycin-nonsusceptible (DNS) E. faecium isolate in a high-inoculum simulated endocardial vegetation ex vivo PK/PD model. E. faecium is a leading cause of hospital-acquired infections and is associated with significant morbidity and mortality. Daptomycin is considered the first-line therapy for vancomycin-resistant E. faecium (VRE), but the highest published doses have failed to eradicate some VRE isolates. The addition of a ß-lactam to daptomycin may result in synergistic activity, but previous in vitro data demonstrate that daptomycin plus ceftaroline failed to eradicate a VRE isolate. Phage therapy as an adjunct to antibiotic therapy has been proposed as a salvage therapy for high-inoculum infections; however, pragmatic clinical comparison trials for endocarditis are lacking and difficult to design, reinforcing the timeliness of such analysis.


Subject(s)
Daptomycin , Enterococcus faecium , Humans , Anti-Bacterial Agents/pharmacology , Daptomycin/pharmacology , Vancomycin/pharmacology , beta-Lactams/pharmacology , Microbial Sensitivity Tests , Ceftaroline
19.
Infect Dis Ther ; 11(2): 661-682, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35150435

ABSTRACT

Multidrug-resistant (MDR) and extensively drug-resistant (XDR) Pseudomonas aeruginosa isolates are frequent causes of serious nosocomial infections that may compromise the selection of antimicrobial therapy. The goal of this review is to summarize recent epidemiologic, microbiologic, and clinical data pertinent to the therapeutic management of patients with infections caused by MDR/XDR-P. aeruginosa. Historically, conventional antipseudomonal ß-lactam antibiotics have been used for the empiric treatment of MDR/XDR-P. aeruginosa. Owing to the remarkable capacity of P. aeruginosa to confer resistance via multiple mechanisms, these traditional therapies are often rendered ineffective. To increase the likelihood of administering empiric antipseudomonal therapy with in vitro activity, a second agent from a different antibiotic class is often administered concomitantly with a traditional antipseudomonal ß-lactam. However, combination therapy may pose an increased risk of antibiotic toxicity and secondary infection, notably, Clostridioides difficile. Multiple novel agents that demonstrate in vitro activity against MDR-P. aeruginosa (e.g., ß-lactam/ß-lactamase inhibitor combinations and cefiderocol) have been recently granted US Food and Drug Administration (FDA) approval and are promising additions to the antipseudomonal armamentarium. Even so, comparative clinical data pertaining to these novel agents is sparse, and concerns surrounding the scarcity of antibiotics active against refractory MDR/XDR-P. aeruginosa necessitates continued assessment of alternative therapies. This is particularly important in patients with cystic fibrosis (CF) who may be chronically colonized and suffer from recurrent infections and disease exacerbations due in part to limited efficacious antipseudomonal agents. Bacteriophages represent a promising candidate for combatting recurrent and refractory infections with their ability to target specific host bacteria and circumvent traditional mechanisms of antibiotic resistance seen in MDR/XDR-P. aeruginosa. Future goals for the management of these infections include increased comparator clinical data of novel agents to determine in what scenario certain agents may be preferred over others. Until then, appropriate treatment of these infections requires a thorough evaluation of patient- and infection-specific factors to guide empiric and definitive therapeutic decisions.

20.
Open Forum Infect Dis ; 9(4): ofac092, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35350174

ABSTRACT

We report our clinical and laboratory experience treating a 50-year-old patient who was critically ill with extensively drug-resistant Acinetobacter baumannii necrotizing pneumonia complicated by empyema in Detroit, Michigan. A precision medicine approach using whole-genome sequencing, susceptibility testing, and synergy analysis guided the selection of rational combination antimicrobial therapy.

SELECTION OF CITATIONS
SEARCH DETAIL