Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Environ Toxicol ; 39(6): 3292-3303, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38415901

ABSTRACT

The high mortality rate of glioblastoma multiforme (GBM), a lethal primary brain tumor, is attributable to postsurgical recurrence. STAT3, an oncogenic protein, is a signal transducer and transcription activator encourages cancer cell migration and proliferation, which results in resistance to therapy. STAT3 inhibition reduces cancer metastasis and improves patient prognosis. Bt354, a small molecule STAT inhibitor, exhibits significant cytotoxic and anti-proliferative activities against certain cancer types. Here, we demonstrated that exposure of GBM cells (U87 MG) to Bt354 had a significant, concentration-dependent growth suppression. Bt354 also induced apoptosis and downregulated the expression of the epithelial-mesenchymal transition genes. Therefore, this study suggests the potential of Bt354 for treating GBM owing to its ability to induce cytotoxicity.


Subject(s)
Antineoplastic Agents , Apoptosis , Glioblastoma , STAT3 Transcription Factor , Humans , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , Glioblastoma/pathology , Glioblastoma/drug therapy , Cell Line, Tumor , Phosphorylation/drug effects , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Cell Proliferation/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology
2.
Mar Drugs ; 21(2)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36827154

ABSTRACT

Aaptamine, a natural marine compound isolated from the sea sponge, has various biological activities, including delta-opioid agonist properties. However, the effects of aaptamine in neuropathic pain remain unclear. In the present study, we used a chronic constriction injury (CCI)-induced peripheral neuropathic rat model to explore the analgesic effects of intrathecal aaptamine administration. We also investigated cellular angiogenesis and lactate dehydrogenase A (LDHA) expression in the ipsilateral lumbar spinal cord after aaptamine administration in CCI rats by immunohistofluorescence. The results showed that aaptamine alleviates CCI-induced nociceptive sensitization, allodynia, and hyperalgesia. Moreover, aaptamine significantly downregulated CCI-induced vascular endothelial growth factor (VEGF), cluster of differentiation 31 (CD31), and LDHA expression in the spinal cord. Double immunofluorescent staining showed that the spinal VEGF and LDHA majorly expressed on astrocytes and neurons, respectively, in CCI rats and inhibited by aaptamine. Collectively, our results indicate aaptamine's potential as an analgesic agent for neuropathic pain. Furthermore, inhibition of astrocyte-derived angiogenesis and neuronal LDHA expression might be beneficial in neuropathy.


Subject(s)
Neuralgia , Vascular Endothelial Growth Factor A , Rats , Animals , Neuralgia/metabolism , Hyperalgesia , Analgesics
3.
Int J Mol Sci ; 23(15)2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35955957

ABSTRACT

Oral squamous cell carcinoma (OSCC) affects tens of thousands of people worldwide. Despite advances in cancer treatment, the 5-year survival rate of patients with late-stage OSCC is low at 50-60%. Therefore, the development of anti-OSCC therapy is necessary. We evaluated the effects of marine-derived triterpene stellettin B in human OC2 and SCC4 cells. Stellettin B dose-dependently decreased the viability of both cell lines, with a significant reduction in OC2 cells at ≥0.1 µM at 24 and 48 h, and in SCC4 cells at ≥1 µM at 24 and 48 h. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive cells were significantly observed at 20 µM of stellettin B at 48 h, with the overexpression of cleaved caspase3 and cleaved poly(ADP-ribose) polymerase (PARP). Moreover, mitochondrial respiratory functions were ablated by stellettin B. Autophagy-related LC3-II/LC3-I ratio and Beclin-1 proteins were increased, whereas p62 was decreased. At 20 µM at 48 h, the expression levels of the endoplasmic reticulum (ER) stress biomarkers calnexin and BiP/GRP78 were significantly increased and mitogen-activated protein kinase (MAPK) signaling pathways were activated. Further investigation using the autophagy inhibitor 3-methyladenine (3-MA) demonstrated that it alleviated stellettin B-induced cell death and autophagy. Overall, our findings show that stellettin B induces the ER stress, mitochondrial stress, apoptosis, and autophagy, causing cell death of OSCC cells.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Triterpenes , Apoptosis , Autophagy , Carcinoma, Squamous Cell/drug therapy , Endoplasmic Reticulum Stress , Humans , Mouth Neoplasms/drug therapy , Signal Transduction , Triterpenes/pharmacology
4.
Int J Mol Sci ; 22(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209254

ABSTRACT

Glioblastoma multiforme (GBM) is a malignant primary brain tumor. The 5-year relative survival rate of patients with GBM remains <30% on average despite aggressive treatments, and secondary therapy fails in 90% of patients. In chemotherapeutic failure, detoxification proteins are crucial to the activity of chemotherapy drugs. Usually, glutathione S-transferase (GST) superfamily members act as detoxification enzymes by activating xenobiotic metabolites through conjugation with glutathione in healthy cells. However, some overexpressed GSTs not only increase GST activity but also trigger chemotherapy resistance and tumorigenesis-related signaling transductions. Whether GSTM3 is involved in GBM chemoresistance remains unclear. In the current study, we found that T98G, a GBM cell line with pre-existing temozolomide (TMZ) resistance, has high glycolysis and GSTM3 expression. GSTM3 knockdown in T98G decreased glycolysis ability through lactate dehydrogenase A activity reduction. Moreover, it increased TMZ toxicity and decreased invasion ability. Furthermore, we provide next-generation sequencing-based identification of significantly changed messenger RNAs of T98G cells with GSTM3 knockdown for further research. GSTM3 was downregulated in intrinsic TMZ-resistant T98G with a change in the expression levels of some essential glycolysis-related genes. Thus, GSTM3 was associated with glycolysis in chemotherapeutic resistance in T98G cells. Our findings provide new insight into the GSTM3 mechanism in recurring GBM.


Subject(s)
Drug Resistance, Neoplasm , Glioblastoma/enzymology , Glutathione Transferase/metabolism , Glycolysis , Neoplasm Proteins/metabolism , Temozolomide , Cell Line, Tumor , Glioblastoma/genetics , Glioblastoma/pathology , Glutathione Transferase/genetics , Humans , Neoplasm Proteins/genetics
5.
Int J Mol Sci ; 22(8)2021 Apr 11.
Article in English | MEDLINE | ID: mdl-33920454

ABSTRACT

Liver cancer remains a leading cause of death, despite advances in anti-cancer therapies. To develop novel drugs, natural products are being considered as a good source for exploration. In this study, a natural product isolated from a soft coral was applied to evaluate its anti-cancer activities in hepatocellular carcinoma SK-HEP-1 cells. Sinularin was determined to have half-maximal inhibitory concentration (IC50) values of ~10 µM after 24, 48, and 72 h. The TUNEL assay and annexin V/PI staining results showed that sinularin induced DNA fragmentation and apoptosis, respectively. An investigation at the molecular level demonstrated that the expression levels of cleaved caspases 3/9 were significantly elevated at 10 µM sinularin. Mitochondrial and intracellular reactive oxygen species (ROS) levels were significantly increased following sinularin treatment, which also affected the mitochondrial membrane potential. In addition, it significantly lowered the mitochondrial respiration parameters and extracellular acidification rates at 10 µM. Further investigation showed that sinularin significantly attenuated wound healing, cell migration, and potential colony formation at 10 µM. Fluorescence microscopic observations showed that the distribution of F-actin filaments was significantly altered at 10 µM sinularin. Supported by Western blot analyses, the expression levels of AKT, p-ERK (extracellular-signal-related kinase), vimentin and VEGF were significantly down-regulated, whereas p-p38, pJNK and E-cadherin were significantly increased. Overall, at the IC50 concentration, sinularin was able to significantly affect SK-HEP-1 cells.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carcinoma, Hepatocellular , Cytoskeleton/metabolism , Diterpenes/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacology , Liver Neoplasms , Mitochondria, Liver/metabolism , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cytoskeleton/pathology , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , MAP Kinase Signaling System/drug effects , Mitochondria, Liver/pathology , Rats
6.
Mar Drugs ; 17(6)2019 May 29.
Article in English | MEDLINE | ID: mdl-31146323

ABSTRACT

Pharmaceutical agents for halting the progression of Parkinson's disease (PD) are lacking. The current available medications only relieve clinical symptoms and may cause severe side effects. Therefore, there is an urgent need for novel drug candidates for PD. In this study, we demonstrated the neuroprotective activity of stellettin B (SB), a compound isolated from marine sponges. We showed that SB could significantly protect SH-SY5Y cells against 6-OHDA-induced cellular damage by inhibiting cell apoptosis and oxidative stress through PI3K/Akt, MAPK, caspase cascade modulation and Nrf2/HO-1 cascade modulation, respectively. In addition, an in vivo study showed that SB reversed 6-OHDA-induced a locomotor deficit in a zebrafish model of PD. The potential for developing SB as a candidate drug for PD treatment is discussed.


Subject(s)
Apoptosis/drug effects , Heme Oxygenase-1/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Porifera/chemistry , Triterpenes/pharmacology , Animals , Aquatic Organisms/chemistry , Cell Line , Cell Survival/drug effects , Disease Models, Animal , Humans , Locomotion/drug effects , Neuroprotective Agents/pharmacology , Oxidopamine/toxicity , Parkinson Disease/drug therapy , Triterpenes/chemistry , Triterpenes/isolation & purification , Zebrafish
7.
Mar Drugs ; 17(3)2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30818790

ABSTRACT

Gingival recession (GR) potentially leads to the exposure of tooth root to the oral cavity microenvironment and increases susceptibility to dental caries, dentin hypersensitivity, and other dental diseases. Even though many etiological factors were reported, the specific mechanism of GR is yet to be elucidated. Given the species richness concerning marine biodiversity, it could be a treasure trove for drug discovery. In this study, we demonstrate the effects of a marine compound, (+)-rhodoptilometrin from crinoid, on gingival cell migration, wound healing, and oxidative phosphorylation (OXPHOS). Experimental results showed that (+)-rhodoptilometrin can significantly increase wound healing, migration, and proliferation of human gingival fibroblast cells, and it does not have effects on oral mucosa fibroblast cells. In addition, (+)-rhodoptilometrin increases the gene and protein expression levels of focal adhesion kinase (FAK), fibronectin, and type I collagen, changes the intracellular distribution of FAK and F-actin, and increases OXPHOS and the expression levels of complexes I~V in the mitochondria. Based on our results, we believe that (+)-rhodoptilometrin might increase FAK expression and promote mitochondrial function to affect cell migration and promote gingival regeneration. Therefore, (+)-rhodoptilometrin may be a promising therapeutic agent for GR.


Subject(s)
Anthraquinones/pharmacology , Echinodermata/chemistry , Fibroblasts/drug effects , Regeneration/drug effects , Wound Healing/drug effects , Animals , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Evaluation, Preclinical , Fibroblasts/cytology , Fibroblasts/physiology , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Gingiva/cytology , Gingiva/drug effects , Gingiva/physiology , Gingival Recession/drug therapy , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Mouth Mucosa/cytology , Mouth Mucosa/drug effects , Mouth Mucosa/physiology , Oxidative Phosphorylation/drug effects
8.
Angiogenesis ; 21(2): 299-312, 2018 05.
Article in English | MEDLINE | ID: mdl-29383634

ABSTRACT

AIM: Delta-like 1 homolog (DLK1) is a non-canonical ligand of Notch signaling, which plays a pivotal role in vascular development and tumor angiogenesis. This study aimed to elucidate the function and mechanism of DLK1 in angiogenesis. METHODS AND RESULTS: By using in situ hybridization and immunohistochemical studies, expression analysis revealed a unique vascular tropism of DLK1 in vasculature of neuroblastoma and vascular tumors. Thus, it was hypothesized that DLK1 may be cleaved and then bound to endothelial cells, thereby regulating the endothelial function. To test such hypothesis, soluble DLK1 encompassing DLK1 extracellular domain (DLK1-EC) was generated and validated by its inhibitory function in adipogenesis assay. Recombinant DLK1-EC exhibited the preferential binding capability toward endothelial cells and stimulated the microvessels sprouting in aorta rings. Above all, implantation of DLK1-EC dose-dependently elicited the cornea neovascularization in rats. By using various angiogenesis assays, it was delineated that DLK1-EC stimulated the angiogenesis by promoting the proliferation, motility and tube formation of endothelial cells. By immunoblot and luciferase analysis, it was elucidated that DLK1-EC enhanced the expression and activities of Notch1/Akt/eNOS/Hes-1 signaling in dose- and time-dependent manners. Pharmaceutical blockage of Notch signaling using γ-secretase inhibitor DAPT abrogated the DLK1-EC-induced endothelial migration and Hes-1-driven luciferase activities. Furthermore, Notch1 inactivation by neutralizing antibodies or RNA interference reversed the DLK1-EC-induced angiogenesis. CONCLUSIONS: The present study unveils the pro-angiogenic function and mechanism of soluble DLK1 through activation of Notch1 signaling in endothelial cells.


Subject(s)
Human Umbilical Vein Endothelial Cells/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Neovascularization, Pathologic/metabolism , Nitric Oxide Synthase Type III/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Notch1/metabolism , Animals , Calcium-Binding Proteins , Human Umbilical Vein Endothelial Cells/pathology , Humans , Neovascularization, Pathologic/pathology , Rats , Rats, Sprague-Dawley
9.
Angiogenesis ; 21(4): 901, 2018 11.
Article in English | MEDLINE | ID: mdl-29748783

ABSTRACT

In the original publication of the article, there is an error in one of the citations in the Discussion section.

10.
Apoptosis ; 23(5-6): 314-328, 2018 06.
Article in English | MEDLINE | ID: mdl-29721785

ABSTRACT

Prodigiosin, a secondary metabolite isolated from marine Vibrio sp., has antimicrobial and anticancer properties. This study investigated the cell death mechanism of prodigiosin in glioblastoma. Glioblastoma multiforme (GBM) is an aggressive primary cancer of the central nervous system. Despite treatment, or standard therapy, the median survival of glioblastoma patients is about 14.6 month. The results of the present study clearly showed that prodigiosin significantly reduced the cell viability and neurosphere formation ability of U87MG and GBM8401 human glioblastoma cell lines. Moreover, prodigiosin with fluorescence signals was detected in the endoplasmic reticulum and found to induce excessive levels of autophagy. These findings were confirmed by observation of LC3 puncta formation and acridine orange staining. Furthermore, prodigiosin caused cell death by activating the JNK pathway and decreasing the AKT/mTOR pathway in glioblastoma cells. Moreover, we found that the autophagy inhibitor 3-methyladenine reversed prodigiosin induced autophagic cell death. These findings of this study suggest that prodigiosin induces autophagic cell death and apoptosis in glioblastoma cells.


Subject(s)
Autophagy/drug effects , Endoplasmic Reticulum Stress/drug effects , Glioblastoma/drug therapy , Prodigiosin/pharmacology , Antineoplastic Agents , Calnexin/metabolism , Caspase 3/metabolism , Drug Screening Assays, Antitumor , Humans , MAP Kinase Signaling System/drug effects , Prodigiosin/isolation & purification , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Tumor Cells, Cultured
11.
Mar Drugs ; 16(1)2018 Jan 02.
Article in English | MEDLINE | ID: mdl-29301308

ABSTRACT

Osteosarcoma (OS) is a common malignant bone cancer. The relatively high density of a person's bone structure means low permeability for drugs, and so finding drugs that can be more effective is important and should not be delayed. MSPs are marine antimicrobial peptides (AMP) and natural compounds extracted from Nile tilapia (Oreochromis niloticus). MSP-4 is a part of the AMPs series, with the advantage of having a molecular weight of about 2.7-kDa and anticancer effects, although the responsible anticancer mechanism is not very clear. The goal of this study is to determine the workings of the mechanism associated with apoptosis resulting from MSP-4 in osteosarcoma MG63 cells. The study showed that MSP-4 significantly induced apoptosis in MG63 cells, with Western blot indicating that MSP-4 induced this apoptosis through an intrinsic pathway and an extrinsic pathway. Thus, a pretreatment system with a particular inhibitor of Z-IETD-FMK (caspase-8 inhibitor) and Z-LEHD-FMK (caspase-9 inhibitor) significantly attenuated the cleavage of caspase-3 and prevented apoptosis. These observations indicate that low concentrations of MSP-4 can help induce the apoptosis of MG63 through a Fas/FasL- and mitochondria-mediated pathway and suggest a potentially innovative alternative to the treatment of human osteosarcoma.


Subject(s)
Anti-Infective Agents/pharmacology , Bone Neoplasms/drug therapy , Cichlids/metabolism , Osteosarcoma/drug therapy , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Blotting, Western , Bone Neoplasms/pathology , Caspase 3/drug effects , Caspase 3/metabolism , Caspase 8/drug effects , Caspase 8/metabolism , Caspase 9/drug effects , Caspase 9/metabolism , Cell Line, Tumor , Fas Ligand Protein/metabolism , Humans , Mitochondria/drug effects , Osteosarcoma/pathology , Peptides/chemistry , Peptides/isolation & purification , Peptides/pharmacology , fas Receptor/metabolism
12.
Int J Mol Sci ; 18(11)2017 Nov 17.
Article in English | MEDLINE | ID: mdl-29149031

ABSTRACT

Research so far has only shown that edible red macroalgae, Sarcodia ceylanica has the ability to eliminate free radicals and anti-diabetic, anti-bacterial properties. This study was conducted both in vitro and in vivo on the ethyl acetate extract (PD1) of farmed red macroalgae in order to explore its anti-inflammatory properties. In order to study the in vitro anti-inflammatory effects of PD1, we used lipopolysaccharide (LPS) to induce inflammatory responses in murine macrophages. For evaluating the potential in vivo anti-inflammatory and antinociceptive effects of PD1, we used carrageenan-induced rat paw edema to produce inflammatory pain. The in vitro results indicated that PD1 inhibited the LPS-induced pro-inflammatory protein, inducible nitric oxide synthase (iNOS) in macrophages. Oral PD1 can reduce carrageenan-induced paw edema and inflammatory nociception. PD1 can significantly inhibit carrageenan-induced leukocyte infiltration, as well as the protein expression of inflammatory mediators (iNOS, interleukin-1ß, and myeloperoxidase) in inflammatory tissue. The above results indicated that PD1 has great potential to be turned into a functional food or used in the development of new anti-inflammatory and antinociceptive agents. The results from this study are expected to help scientists in the continued development of Sarcodia ceylanica for other biomedical applications.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Plant Extracts/pharmacology , Seaweed/chemistry , Acetates/chemistry , Animals , Biomarkers/metabolism , Carrageenan/adverse effects , Chemical Fractionation , Disease Models, Animal , Edema/pathology , Edema/therapy , Macrophages/drug effects , Mice , RAW 264.7 Cells , Rats , Rats, Wistar
13.
J Headache Pain ; 17(1): 72, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27541934

ABSTRACT

BACKGROUND: Transforming growth factor-ßs (TGF-ßs) are a group of multifunctional proteins that have neuroprotective roles in various experimental models. We previously reported that intrathecal (i.t.) injections of TGF-ß1 significantly inhibit neuropathy-induced thermal hyperalgesia, spinal microglia and astrocyte activation, as well as upregulation of tumor necrosis factor-α. However, additional cellular mechanisms for the antinociceptive effects of TGF-ß1, such as the mitogen-activated protein kinase (MAPK) pathway, have not been elucidated. During persistent pain, activation of MAPKs, especially p38 and extracellular signal-regulated kinase (ERK), have crucial roles in the induction and maintenance of pain hypersensitivity, via both nontranscriptional and transcriptional regulation. In the present study, we used a chronic constriction injury (CCI) rat model to explore the role of spinal p38 and ERK in the analgesic effects of TGF-ß1. METHODS: We investigated the cellular mechanisms of the antinociceptive effects of i.t. injections of TGF-ß1 in CCI induced neuropathic rats by spinal immunohistofluorescence analyses. RESULTS: The results demonstrated that the antinociceptive effects of TGF-ß1 (5 ng) were maintained at greater than 50 % of the maximum possible effect in rats with CCI for at least 6 h after a single i.t. administration. Thus, we further examined these alterations in spinal p38 and ERK from 0.5 to 6 h after i.t. administration of TGF-ß1. TGF-ß1 significantly attenuated CCI-induced upregulation of phosphorylated p38 (phospho-p38) and phosphorylated ERK (phospho-ERK) expression in the dorsal horn of the lumbar spinal cord. Double immunofluorescence staining illustrated that upregulation of spinal phospho-p38 was localized to neurons, activated microglial cells, and activated astrocytes in rats with CCI. Additionally, increased phospho-ERK occurred in activated microglial cells and activated astrocytes. Furthermore, i.t. administration of TGF-ß1 markedly inhibited phospho-p38 upregulation in neurons, microglial cells, and astrocytes. However, i.t. injection of TGF-ß1 also reduced phospho-ERK upregulation in microglial cells and astrocytes. CONCLUSIONS: The present results demonstrate that suppressing p38 and ERK activity affects TGF-ß1-induced analgesia during neuropathy.


Subject(s)
Constriction, Pathologic/pathology , Extracellular Signal-Regulated MAP Kinases/metabolism , Inflammation/pathology , Peripheral Nerve Injuries/pathology , Protein Serine-Threonine Kinases/pharmacology , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Disease Models, Animal , Male , Rats , Rats, Wistar , Receptor, Transforming Growth Factor-beta Type I , Up-Regulation
14.
Mar Drugs ; 13(2): 861-78, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25668036

ABSTRACT

BACKGROUND: WA-25 (dihydroaustrasulfone alcohol, a synthetic derivative of marine compound WE-2) suppresses atherosclerosis in rats by reducing neointima formation. Because angiogenesis plays a critical role in the pathogenesis of atherosclerosis, the present study investigated the angiogenic function and mechanism of WA-25. METHODS: The angiogenic effect of WA-25 was evaluated using a rat aortic ring assay and transgenic zebrafish models were established using transgenic Tg(fli-1:EGFP)y1 and Tg(kdrl:mCherryci5-fli1a:negfpy7) zebrafish embryos. In addition, the effect of WA-25 on distinct angiogenic processes, including matrix metalloproteinase (MMP) expression, endothelial cell proliferation and migration, as well as tube formation, was studied using human umbilical vein endothelial cells (HUVECs). The effect of WA-25 on the endothelial vascular endothelial growth factor (VEGF) signaling pathway was elucidated using qRT-PCR, immunoblot analysis, immunofluorescence and flow cytometric analyses. RESULTS: The application of WA-25 perturbed the development of intersegmental vessels in transgenic zebrafish. Moreover, WA-25 potently suppressed microvessel sprouting in organotypic rat aortic rings. Among cultured endothelial cells, WA-25 significantly and dose-dependently inhibited MMP-2/MMP-9 expression, proliferation, migration and tube formation in HUVECs. Mechanistic studies revealed that WA-25 significantly reduced the VEGF release by reducing VEGF expression at the mRNA and protein levels. In addition, WA-25 reduced surface VEGF receptor 2 (VEGFR2/Flk-1) expression by repressing the VEGFR2 mRNA level. Finally, an exogenous VEGF supply partially rescued the WA-25-induced angiogenesis blockage in vitro and in vivo. CONCLUSIONS: WA-25 is a potent angiogenesis inhibitor that acts through the down-regulation of VEGF and VEGFR2 in endothelial cells. GENERAL SIGNIFICANCE: WA-25 may constitute a novel anti-angiogenic drug that acts by targeting endothelial VEGF/VEGFR2 signaling.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Anthozoa/chemistry , Butanones/pharmacology , Sulfones/pharmacology , Vascular Endothelial Growth Factor A/drug effects , Vascular Endothelial Growth Factor Receptor-2/drug effects , Animals , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Male , Matrix Metalloproteinase Inhibitors/pharmacology , Neovascularization, Pathologic/prevention & control , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Zebrafish
15.
Free Radic Biol Med ; 220: 28-42, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38679300

ABSTRACT

Cancer of the head and neck encompasses a wide range of cancers, including oral and oropharyngeal cancers. Oral cancer is often diagnosed at advanced stages and has a dismal prognosis. Piscidin-1, a marine antimicrobial peptide (AMP) containing approximately 22 amino acids, also exhibits significant anticancer properties. We investigated the possible anti-oral cancer effects of piscidin-1 and clarified the mechanisms underlying these effects. We treated the oral squamous cell carcinoma cell lines OC2 and SCC4 with piscidin-1. Cell viability and the expression of different hallmark apoptotic molecules, including reactive oxygen species (ROS), were tested using the appropriate MTT assay, flow cytometry and western blotting assays, and human umbilical vein endothelial cell (HUVEC) wound healing, migration, and tube formation (angiogenesis) assays. Piscidin-1 increases cleaved caspase 3 levels to induce apoptosis. Piscidin-1 also increases ROS levels and intensifies oxidative stress in the endoplasmic reticulum and mitochondria, causing mitochondrial dysfunction. Additionally, it decreases the oxygen consumption rates and activity of mitochondrial complexes I-V. As expected, the antioxidants MitoTEMPOL and N-acetylcysteine reduce piscidin-1-induced ROS generation and intracellular calcium accumulation. Piscidin-1 also inhibits matrix metalloproteinase (MMP)-2/-9 expression in HUVECs, affecting migration and tube formation angiogenesis. We demonstrated that piscidin-1 can promote apoptosis via both intrinsic and extrinsic apoptotic pathways and findings indicate that piscidin-1 has anti-proliferative and anti-angiogenic properties in oral cancer treatment. Our study on piscidin-1 thus provides a basis for future translational anti-oral cancer drug research and a new theoretical approach for anti-oral cancer clinical research.


Subject(s)
Antimicrobial Cationic Peptides , Apoptosis , Carcinoma, Squamous Cell , Fish Proteins , Human Umbilical Vein Endothelial Cells , Mouth Neoplasms , Neovascularization, Pathologic , Reactive Oxygen Species , Humans , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Mouth Neoplasms/pathology , Mouth Neoplasms/drug therapy , Mouth Neoplasms/metabolism , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Antimicrobial Cationic Peptides/pharmacology , Cell Line, Tumor , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Fish Proteins/pharmacology , Fish Proteins/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Oxidative Stress/drug effects , Angiogenesis Inhibitors/pharmacology , Animals , Angiogenesis
16.
Biochim Biophys Acta Mol Cell Res ; : 119799, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39043304

ABSTRACT

BACKGROUND AND PURPOSE: Scientists have been exploring anti-angiogenic strategies to inhibit angiogenesis and prevent tumor growth. Vasculogenic mimicry (VM) in glioblastoma multiforme (GBM) poses a challenge, complicating anti-angiogenesis therapy. A novel drug, GN25 (3-[{1,4-dihydro-5,8-dimethoxy-1,4-dioxo-2-naphthalenyl}thio]-propanoic acid), can inhibit tumor formation. This study aims to investigate the microenvironmental effects and molecular mechanisms of GN25 in anti-angiogenesis and anti-VM. EXPERIMENTAL APPROACH: MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay was used to evaluate the cell viability of different concentrations of GN25 in human umbilical vein endothelial cells (HUVEC) and Uppsala 87 malignant glioma (U87MG) cells. Functional assays were used to investigate the effects of GN25 on angiogenesis-related processes, whereas gelatin zymography, enzyme-linked immunosorbent assays, and Western blotting were utilized to assess the influence on matrix metalloproteinase (MMP)-2 and vascular endothelial growth factor (VEGF) secretion and related signaling pathways. KEY RESULTS: GN25 suppressed migration, wound healing, and tube formation in HUVECs and disrupted angiogenesis in a rat aorta ring and zebrafish embryo model. GN25 dose-dependently reduced phosphatidylinositol 3-kinase/AKT and inhibited MMP-2/VEGF secretion in HUVECs. In U87MG cells, GN25 inhibited migration, wound healing, and VM, accompanied by a decrease in MMP-2 and VEGF secretion. The results indicate that GN25 effectively inhibits angiogenesis and VM formation in HUVECs and U87MG cells without affecting preexisting vascular structures. CONCLUSION AND IMPLICATIONS: This study elaborated GN25's potential as an anti-angiogenic agent by elucidating its inhibitory effects on classical angiogenesis. VM provides valuable insights for developing novel therapeutic strategies against tumor progression and angiogenesis-related diseases. These results indicate the potential of GN25 as a promising candidate for angiogenesis-related diseases.

17.
Biomed Pharmacother ; 172: 116279, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38368838

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory skin condition primarily driven by T helper 2 (Th2) cytokines, resulting in skin barrier defects, angiogenesis, and inflammatory responses. The marine natural product excavatolide B (EXCB), isolated from the Formosan Gorgonian coral Briareum stechei, exhibits anti-inflammatory and analgesic properties. To enhance solubility, EXCB is chemically modified into the derivatives EXCB-61 salt and EXCB-79. The study aims to investigate the therapeutic effects of these compounds on dinitrochlorbenzene (DNCB)-induced skin damage and to elucidate the underlying anti-inflammatory and anti-angiogenesis mechanism. In vitro, using lipopolysaccharide (LPS)-induced RAW 264.7 cells, all compounds at 10 µM significantly inhibited expression of inflammatory proteins (inducible nitric oxide synthase and cyclooxygenase-2), vascular endothelial growth factor (VEGF), and cytokines (interleukin (IL)-1ß, IL-6, and IL-17A). In vivo, topical application of these compounds on DNCB-induced AD mice alleviated skin symptoms, reduced serum levels of IgE, IL-4, IL-13, IL-17, and interferon-γ, and moderated histological phenomena such as hyperplasia, inflammatory cell infiltration, and angiogenesis. The three compounds restored the expression of skin barrier-related proteins (loricrin, filaggrin, and claudin-1) and reduced the expression of angiogenesis-related proteins (VEGF and platelet endothelial cell adhesion molecule-CD31) in the tissues. This is the first study to indicate that EXCB, EXCB-61 salt, and EXCB-79 can treat AD disease by reducing inflammation and angiogenesis. Hence, they may be considered potential candidates for the development of new drugs for AD.


Subject(s)
Dermatitis, Atopic , Diterpenes , Animals , Mice , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Angiogenesis Inhibitors , Vascular Endothelial Growth Factor A , Dinitrochlorobenzene , Cytokines , Angiogenic Proteins , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
18.
J Pathol ; 228(2): 158-69, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22247069

ABSTRACT

Hepatoma-derived growth factor (HDGF) participates in tumourigenesis but its role in breast cancer is unclear. We set out to elucidate the expression profile and function of HDGF during breast carcinogenesis. Immunoblot and immunohistochemical studies revealed elevated HDGF expression in human breast cancer cell lines and tissues. Nuclear HDGF labelling index was positively correlated with tumour grade, stage and proliferation index, but negatively correlated with survival rate in breast cancer patients. HDGF over-expression was associated with lymph node metastasis and represented an independent prognostic factor for tumour recurrence. Gene transfer studies were performed to elucidate the influence of cellular HDGF level on the malignant behaviour and epithelial-mesenchymal transition (EMT) of breast cancer cells. Adenovirus-mediated HDGF over-expression stimulated the invasiveness and colony formation of MCF-7 cells. Moreover, HDGF over-expression promoted breast cancer cell EMT by E-cadherin down-regulation and vimentin up-regulation. Conversely, HDGF knockdown by RNA interference in MDA-MB-231 cells attenuated the malignant behaviour and elicited EMT reversal by enhancing E-cadherin expression while depleting vimentin expression. Because HDGF is a secreted protein, we evaluated the cellular function of recombinant HDGF and found that exogenously supplied HDGF enhanced the invasiveness of breast cancer cells by down-regulating E-cadherin and up-regulating vimentin at transcriptional and translational levels. In contrast, blockade of HDGF secretion with an HDGF antibody inhibited the malignant behaviours and EMT. Finally, exogenous HDGF partially reversed benzyl isothiocyanate (BITC)-induced EMT suppression. HDGF over-expression may exert a prognostic role for tumour metastasis and recurrence in breast cancer by modulating EMT. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Adenocarcinoma/metabolism , Breast Neoplasms/metabolism , Epithelial-Mesenchymal Transition/physiology , Intercellular Signaling Peptides and Proteins/metabolism , Adenocarcinoma/drug therapy , Adenocarcinoma/secondary , Adult , Antibodies, Blocking/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Epithelial-Mesenchymal Transition/drug effects , Female , Gene Transfer Techniques , Humans , Intercellular Signaling Peptides and Proteins/immunology , Intercellular Signaling Peptides and Proteins/pharmacology , Ki-67 Antigen/metabolism , Lymph Nodes/pathology , Lymphatic Metastasis , Mastectomy , Middle Aged , Neoplasm Invasiveness/pathology , Neoplasm Invasiveness/physiopathology , Neoplasm Recurrence, Local , Prognosis , Recombinant Proteins
19.
Biomed Pharmacother ; 160: 114359, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36753955

ABSTRACT

Glioblastoma multiforme (GBM) is a common central nervous system disease with a poor prognosis; its five-year survival rate is <5 %, and its median survival of 15 months. Current treatment includes chemotherapy with temozolomide, which is ineffective against GBM, suggesting an urgent need to develop novel therapies. This study evaluated isoaaptamine and aaptamine in the GBM cell lines for cell viability; GBM 8401, U87 MG, U138 MG, and T98G. Our findings showed that isoaaptamine was more potent than its iso-form aaptamine in these four cell lines, and GBM 8401 was most sensitive to isoaaptamine. The study in GBM 8401 cells showed that apoptosis was induced by isoaaptamine with increased cleaved caspase 3 and poly ADP-ribose polymerase (PARP). Moreover, isoaaptamine enhanced oxidative stress by increasing the levels of reactive oxygen species (ROS), inhibiting mitochondrial and cellular superoxidase dismutases (SOD1&2), peroxidase and an anti-apoptotic protein (Bcl-2), and disrupting mitochondrial membrane potential. In addition, the oxygen consumption rates and activities of mitochondrial complexes I-V were significantly reduced. Mitochondrial dynamics were prone to fission instead of fusion after isoaaptamine treatment, and ATP synthesis was ablated. Also, autophagy-related acidic organelle vesicles were formed, indicating autophagy was triggered. Overall, isoaaptamine-induced ROS overproduction in mitochondria could cause mitochondrial dysfunction, apoptosis, and autophagy in the GBM cells.


Subject(s)
Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/metabolism , Reactive Oxygen Species/metabolism , Mitochondria , Autophagy , Apoptosis , Cell Line, Tumor
20.
Antioxidants (Basel) ; 12(7)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37507960

ABSTRACT

Osteosarcoma (OS) is the most common primary malignant bone tumor that produces immature osteoid. Metastatic OS has a poor prognosis with a death rate of >70%. Manoalide is a natural sesterterpenoid isolated from marine sponges. It is a phospholipase A2 inhibitor with anti-inflammatory, analgesic, and anti-cancer properties. This study aimed to investigate the mechanism and effect of manoalide on OS cells. Our experiments showed that manoalide induced cytotoxicity in 143B and MG63 cells (human osteosarcoma). Treatment with manoalide at concentrations of 10, 20, and 40 µM for 24 and 48 h reduced MG63 cell viability to 45.13-4.40% (p < 0.01). Meanwhile, manoalide caused reactive oxygen species (ROS) overproduction and disrupted antioxidant proteins, activating the apoptotic proteins caspase-9/-3 and PARP (Poly (ADP-ribose) polymerase). Excessive levels of ROS in the mitochondria affected oxidative phosphorylation, ATP generation, and membrane potential (ΔΨm). Additionally, manoalide down-regulated mitochondrial fusion protein and up-regulated mitochondrial fission protein, resulting in mitochondrial fragmentation and impaired function. On the contrary, a pre-treatment with n-acetyl-l-cysteine ameliorated manoalide-induced apoptosis, ROS, and antioxidant proteins in OS cells. Overall, our findings show that manoalide induces oxidative stress, mitochondrial dysfunction, and apoptosis, causing the cell death of OS cells, showing potential as an innovative alternative treatment in human OS.

SELECTION OF CITATIONS
SEARCH DETAIL