Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Cell ; 182(3): 545-562.e23, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32621799

ABSTRACT

Scar tissue size following myocardial infarction is an independent predictor of cardiovascular outcomes, yet little is known about factors regulating scar size. We demonstrate that collagen V, a minor constituent of heart scars, regulates the size of heart scars after ischemic injury. Depletion of collagen V led to a paradoxical increase in post-infarction scar size with worsening of heart function. A systems genetics approach across 100 in-bred strains of mice demonstrated that collagen V is a critical driver of postinjury heart function. We show that collagen V deficiency alters the mechanical properties of scar tissue, and altered reciprocal feedback between matrix and cells induces expression of mechanosensitive integrins that drive fibroblast activation and increase scar size. Cilengitide, an inhibitor of specific integrins, rescues the phenotype of increased post-injury scarring in collagen-V-deficient mice. These observations demonstrate that collagen V regulates scar size in an integrin-dependent manner.


Subject(s)
Cicatrix/metabolism , Collagen Type V/deficiency , Collagen Type V/metabolism , Heart Injuries/metabolism , Myocardial Contraction/genetics , Myofibroblasts/metabolism , Animals , Cicatrix/genetics , Cicatrix/physiopathology , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Collagen Type III/genetics , Collagen Type III/metabolism , Collagen Type V/genetics , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Female , Fibrosis/genetics , Fibrosis/metabolism , Gene Expression Regulation/genetics , Integrins/antagonists & inhibitors , Integrins/genetics , Integrins/metabolism , Isoproterenol/pharmacology , Male , Mechanotransduction, Cellular/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Atomic Force/instrumentation , Microscopy, Electron, Transmission , Myocardial Contraction/drug effects , Myofibroblasts/cytology , Myofibroblasts/pathology , Myofibroblasts/ultrastructure , Principal Component Analysis , Proteomics , RNA-Seq , Single-Cell Analysis
2.
Nature ; 613(7944): 534-542, 2023 01.
Article in English | MEDLINE | ID: mdl-36599984

ABSTRACT

To survive, animals must convert sensory information into appropriate behaviours1,2. Vision is a common sense for locating ethologically relevant stimuli and guiding motor responses3-5. How circuitry converts object location in retinal coordinates to movement direction in body coordinates remains largely unknown. Here we show through behaviour, physiology, anatomy and connectomics in Drosophila that visuomotor transformation occurs by conversion of topographic maps formed by the dendrites of feature-detecting visual projection neurons (VPNs)6,7 into synaptic weight gradients of VPN outputs onto central brain neurons. We demonstrate how this gradient motif transforms the anteroposterior location of a visual looming stimulus into the fly's directional escape. Specifically, we discover that two neurons postsynaptic to a looming-responsive VPN type promote opposite takeoff directions. Opposite synaptic weight gradients onto these neurons from looming VPNs in different visual field regions convert localized looming threats into correctly oriented escapes. For a second looming-responsive VPN type, we demonstrate graded responses along the dorsoventral axis. We show that this synaptic gradient motif generalizes across all 20 primary VPN cell types and most often arises without VPN axon topography. Synaptic gradients may thus be a general mechanism for conveying spatial features of sensory information into directed motor outputs.


Subject(s)
Behavior, Animal , Drosophila , Neurons , Psychomotor Performance , Synapses , Animals , Brain/cytology , Brain/physiology , Drosophila/anatomy & histology , Drosophila/cytology , Drosophila/physiology , Neurons/physiology , Visual Fields/physiology , Synapses/metabolism , Axons , Dendrites , Escape Reaction
3.
Nature ; 603(7899): 112-118, 2022 03.
Article in English | MEDLINE | ID: mdl-35197627

ABSTRACT

The assembly of neural circuits is dependent on precise spatiotemporal expression of cell recognition molecules1-5. Factors controlling cell type specificity have been identified6-8, but how timing is determined remains unknown. Here we describe induction of a cascade of transcription factors by a steroid hormone (ecdysone) in all fly visual system neurons spanning target recognition and synaptogenesis. We demonstrate through single-cell sequencing that the ecdysone pathway regulates the expression of a common set of targets required for synaptic maturation and cell-type-specific targets enriched for cell-surface proteins regulating wiring specificity. Transcription factors in the cascade regulate the expression of the same wiring genes in complex ways, including activation in one cell type and repression in another. We show that disruption of the ecdysone pathway generates specific defects in dendritic and axonal processes and synaptic connectivity, with the order of transcription factor expression correlating with sequential steps in wiring. We also identify shared targets of a cell-type-specific transcription factor and the ecdysone pathway that regulate specificity. We propose that neurons integrate a global temporal transcriptional module with cell-type-specific transcription factors to generate different cell-type-specific patterns of cell recognition molecules regulating wiring.


Subject(s)
Drosophila Proteins , Ecdysone , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Ecdysone/metabolism , Gene Expression Regulation , Synapses/metabolism , Transcription Factors/metabolism
5.
Mol Ther ; 27(8): 1389-1406, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31178391

ABSTRACT

Site-specific correction of a point mutation causing a monogenic disease in autologous hematopoietic stem and progenitor cells (HSPCs) can be used as a treatment of inherited disorders of the blood cells. Sickle cell disease (SCD) is an ideal model to investigate the potential use of gene editing to transvert a single point mutation at the ß-globin locus (HBB). We compared the activity of zinc-finger nucleases (ZFNs) and CRISPR/Cas9 for editing, and homologous donor templates delivered as single-stranded oligodeoxynucleotides (ssODNs), adeno-associated virus serotype 6 (AAV6), integrase-deficient lentiviral vectors (IDLVs), and adenovirus 5/35 serotype (Ad5/35) to transvert the base pair responsible for SCD in HBB in primary human CD34+ HSPCs. We found that the ZFNs and Cas9 directed similar frequencies of nuclease activity. In vitro, AAV6 led to the highest frequencies of homology-directed repair (HDR), but levels of base pair transversions were significantly reduced when analyzing cells in vivo in immunodeficient mouse xenografts, with similar frequencies achieved with either AAV6 or ssODNs. AAV6 also caused significant impairment of colony-forming progenitors and human cell engraftment. Gene correction in engrafting hematopoietic stem cells may be limited by the capacity of the cells to mediate HDR, suggesting additional manipulations may be needed for high-efficiency gene correction in HSPCs.


Subject(s)
Anemia, Sickle Cell/genetics , Gene Editing , Hematopoietic Stem Cells/metabolism , Mutation , beta-Globins/genetics , Anemia, Sickle Cell/metabolism , Anemia, Sickle Cell/therapy , CRISPR-Cas Systems , Dependovirus , Endonucleases/genetics , Gene Expression , Gene Targeting , Genetic Therapy , Genetic Vectors/genetics , Humans , Parvovirinae/genetics , Tissue Donors , Transduction, Genetic , Zinc Finger Nucleases/genetics
6.
BMC Genomics ; 16: 198, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25888292

ABSTRACT

BACKGROUND: Variation within splicing regulatory sequences often leads to differences in gene models among individuals within a species. Two alleles of the same gene may express transcripts with different exon/intron structures and consequently produce functionally different proteins. Matching genomic and transcriptomic data allows us to identify putative regulatory variants associated with changes in splicing patterns. RESULTS: Here we analyzed natural variation of splicing patterns in the transcriptomes of 81 natural strains of Drosophila melanogaster with known genotypes. We identified dozens of genotype-specific splicing patterns associated with putative cis-splicing quantitative trait loci (sQTL). The majority of changes can be explained by mutations in splice sites. Allelic-imbalance in splicing patterns confirmed that the majority are regulated mainly by cis-genetic effects. Remarkably, allele-specific splicing changes often lead to qualitative changes in gene models, yielding many isoforms not previously annotated. The observed alterations are typically outside protein-coding regions or affect only very short protein segments. CONCLUSIONS: Overall, the sets of gene models appear to be flexible within D. melanogaster populations. The observed variation in splicing patterns are predicted to have limited effects on the encoded protein sequences. To our knowledge, this is the first sQTL mapping study in Drosophila.


Subject(s)
Drosophila melanogaster/genetics , Genetic Variation , Models, Genetic , Alleles , Allelic Imbalance , Alternative Splicing , Animals , Exons , Gene Expression Profiling , Genotype , Open Reading Frames , Polymorphism, Single Nucleotide , Quantitative Trait Loci , RNA Splice Sites , Transcriptome
7.
Hum Mol Genet ; 22(17): 3449-59, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23640990

ABSTRACT

Proper splicing is often crucial for gene functioning and its disruption may be strongly deleterious. Nevertheless, even the essential for splicing canonical dinucleotides of the splice sites are often polymorphic. Here, we use data from The 1000 Genomes Project to study single-nucleotide polymorphisms (SNPs) in the canonical dinucleotides. Splice sites carrying SNPs are enriched in weakly expressed genes and in rarely used alternative splice sites. Genes with disrupted splice sites tend to have low selective constraint, and the splice sites disrupted by SNPs are less likely to be conserved in mouse. Furthermore, SNPs are enriched in splice sites whose effects on gene function are minor: splice sites located outside of protein-coding regions, in shorter exons, closer to the 3'-ends of proteins, and outside of functional protein domains. Most of these effects are more pronounced for high-frequency SNPs. Despite these trends, many of the polymorphic sites may still substantially affect the function of the corresponding genes. A number of the observed splice site-disrupting SNPs, including several high-frequency ones, were found among mutations described in OMIM.


Subject(s)
Genome, Human , Polymorphism, Single Nucleotide , RNA Splice Sites , Animals , Databases, Genetic , Evolution, Molecular , Genetic Variation , Genome , Humans , Mice , Protein Conformation , Proteins/chemistry , RNA Splicing , Sequence Alignment
8.
Heliyon ; 10(11): e32243, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38947477

ABSTRACT

The Wnt signaling pathway is one of the most ancient and pivotal signaling cascades, governing diverse processes in development and cancer regulation. Within the realm of cancer treatment, genistein emerges as a promising candidate due to its multifaceted modulation of various signaling pathways, including the Wnt pathway. Despite promising preclinical studies, the precise mechanisms underlying genistein's therapeutic effects via Wnt modulation remain elusive. In this study, we unveil novel insights into the therapeutic mechanisms of genistein by elucidating its inhibitory effects on Wnt signaling through macropinocytosis. Additionally, we demonstrate its capability to curtail cell growth, proliferation, and lysosomal activity in the SW480 colon adenocarcinoma cell model. Furthermore, our investigation extends to the embryonic context, where genistein influences gene regulatory networks governed by endogenous Wnt pathways. Our findings shed light on the intricate interplay between genistein, Wnt signaling, membrane trafficking, and gene regulation, paving the way for further exploration of genistein's therapeutic potential in cancer treatment strategies.

9.
Biol Open ; 13(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38713004

ABSTRACT

Recent research has shown that membrane trafficking plays an important role in canonical Wnt signaling through sequestration of the ß-catenin destruction complex inside multivesicular bodies (MVBs) and lysosomes. In this study, we introduce Ouabain, an inhibitor of the Na,K-ATPase pump that establishes electric potentials across membranes, as a potent inhibitor of Wnt signaling. We find that Na,K-ATPase levels are elevated in advanced colon carcinoma, that this enzyme is elevated in cancer cells with constitutively activated Wnt pathway and is activated by GSK3 inhibitors that increase macropinocytosis. Ouabain blocks macropinocytosis, which is an essential step in Wnt signaling, probably explaining the strong effects of Ouabain on this pathway. In Xenopus embryos, brief Ouabain treatment at the 32-cell stage, critical for the earliest Wnt signal in development-inhibited brains, could be reversed by treatment with Lithium chloride, a Wnt mimic. Inhibiting membrane trafficking may provide a way of targeting Wnt-driven cancers.


Subject(s)
Colonic Neoplasms , Pinocytosis , Sodium-Potassium-Exchanging ATPase , Wnt Signaling Pathway , Animals , Humans , Cell Line, Tumor , Colonic Neoplasms/metabolism , Colonic Neoplasms/etiology , Ouabain/pharmacology , Sodium-Potassium-Exchanging ATPase/metabolism , Xenopus
10.
bioRxiv ; 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39071296

ABSTRACT

The brain can represent almost limitless objects to "categorize an unlabeled world" (Edelman, 1989). This feat is supported by expansion layer circuit architectures, in which neurons carrying information about discrete sensory channels make combinatorial connections onto much larger postsynaptic populations. Combinatorial connections in expansion layers are modeled as randomized sets. The extent to which randomized wiring exists in vivo is debated, and how combinatorial connectivity patterns are generated during development is not understood. Non-deterministic wiring algorithms could program such connectivity using minimal genomic information. Here, we investigate anatomic and transcriptional patterns and perturb partner availability to ask how Kenyon cells, the expansion layer neurons of the insect mushroom body, obtain combinatorial input from olfactory projection neurons. Olfactory projection neurons form their presynaptic outputs in an orderly, predictable, and biased fashion. We find that Kenyon cells accept spatially co-located but molecularly heterogeneous inputs from this orderly map, and ask how Kenyon cell surface molecule expression impacts partner choice. Cell surface immunoglobulins are broadly depleted in Kenyon cells, and we propose that this allows them to form connections with molecularly heterogeneous partners. This model can explain how developmentally identical neurons acquire diverse wiring identities.

11.
bioRxiv ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38915533

ABSTRACT

The brain exhibits remarkable neuronal diversity which is critical for its functional integrity. From the sheer number of cell types emerging from extensive transcriptional, morphological, and connectome datasets, the question arises of how the brain is capable of generating so many unique identities. 'Terminal selectors' are transcription factors hypothesized to determine the final identity characteristics in post-mitotic cells. Which transcription factors function as terminal selectors and the level of control they exert over different terminal characteristics are not well defined. Here, we establish a novel role for the transcription factor broad as a terminal selector in Drosophila melanogaster. We capitalize on existing large sequencing and connectomics datasets and employ a comprehensive characterization of terminal characteristics including Perturb-seq and whole-cell electrophysiology. We find a single isoform broad-z4 serves as the switch between the identity of two visual projection neurons LPLC1 and LPLC2. Broad-z4 is natively expressed in LPLC1, and is capable of transforming the transcriptome, morphology, and functional connectivity of LPLC2 cells into LPLC1 cells when perturbed. Our comprehensive work establishes a single isoform as the smallest unit underlying an identity switch, which may serve as a conserved strategy replicated across developmental programs.

12.
Curr Biol ; 33(18): 3998-4005.e6, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37647901

ABSTRACT

Advances in brain connectomics have demonstrated the extraordinary complexity of neural circuits.1,2,3,4,5 Developing neurons encounter the axons and dendrites of many different neuron types and form synapses with only a subset of them. During circuit assembly, neurons express cell-type-specific repertoires comprising many cell adhesion molecules (CAMs) that can mediate interactions between developing neurites.6,7,8 Many CAM families have been shown to contribute to brain wiring in different ways.9,10 It has been challenging, however, to identify receptor-ligand pairs directly matching neurons with their synaptic targets. Here, we integrated the synapse-level connectome of the neural circuit11,12 with the developmental expression patterns7 and binding specificities of CAMs6,13 on pre- and postsynaptic neurons in the Drosophila visual system. To overcome the complexity of neural circuits, we focus on pairs of genetically related neurons that make differential wiring choices. In the motion detection circuit,14 closely related subtypes of T4/T5 neurons choose between alternative synaptic targets in adjacent layers of neuropil.12 This choice correlates with the matching expression in synaptic partners of different receptor-ligand pairs of the Beat and Side families of CAMs. Genetic analysis demonstrated that presynaptic Side-II and postsynaptic Beat-VI restrict synaptic partners to the same layer. Removal of this receptor-ligand pair disrupts layers and leads to inappropriate targeting of presynaptic sites and postsynaptic dendrites. We propose that different Side/Beat receptor-ligand pairs collaborate with other recognition molecules to determine wiring specificities in the fly brain. Combining transcriptomes, connectomes, and protein interactome maps allow unbiased identification of determinants of brain wiring.


Subject(s)
Connectome , Animals , Transcriptome , Ligands , Neurons/physiology , Drosophila/genetics , Drosophila/metabolism , Brain/metabolism , Synapses/physiology , Cell Adhesion Molecules/metabolism
13.
Skelet Muscle ; 13(1): 1, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36609344

ABSTRACT

BACKGROUND: The dystrophin-glycoprotein complex (DGC) is a critical adhesion complex of the muscle cell membrane, providing a mechanical link between the extracellular matrix (ECM) and the cortical cytoskeleton that stabilizes the sarcolemma during repeated muscle contractions. One integral component of the DGC is the transmembrane protein, sarcospan (SSPN). Overexpression of SSPN in the skeletal muscle of mdx mice (murine model of DMD) restores muscle fiber attachment to the ECM in part through an associated increase in utrophin and integrin adhesion complexes at the cell membrane, protecting the muscle from contraction-induced injury. In this study, we utilized transcriptomic and ECM protein-optimized proteomics data sets from wild-type, mdx, and mdx transgenic (mdxTG) skeletal muscle tissues to identify pathways and proteins driving the compensatory action of SSPN overexpression. METHODS: The tibialis anterior and quadriceps muscles were isolated from wild-type, mdx, and mdxTG mice and subjected to bulk RNA-Seq and global proteomics analysis using methods to enhance capture of ECM proteins. Data sets were further analyzed through the ingenuity pathway analysis (QIAGEN) and integrative gene set enrichment to identify candidate networks, signaling pathways, and upstream regulators. RESULTS: Through our multi-omics approach, we identified 3 classes of differentially expressed genes and proteins in mdxTG muscle, including those that were (1) unrestored (significantly different from wild type, but not from mdx), (2) restored (significantly different from mdx, but not from wild type), and (3) compensatory (significantly different from both wild type and mdx). We identified signaling pathways that may contribute to the rescue phenotype, most notably cytoskeleton and ECM organization pathways. ECM-optimized proteomics revealed an increased abundance of collagens II, V, and XI, along with ß-spectrin in mdxTG samples. Using ingenuity pathway analysis, we identified upstream regulators that are computationally predicted to drive compensatory changes, revealing a possible mechanism of SSPN rescue through a rewiring of cell-ECM bidirectional communication. We found that SSPN overexpression results in upregulation of key signaling molecules associated with regulation of cytoskeleton organization and mechanotransduction, including Yap1, Sox9, Rho, RAC, and Wnt. CONCLUSIONS: Our findings indicate that SSPN overexpression rescues dystrophin deficiency partially through mechanotransduction signaling cascades mediated through components of the ECM and the cortical cytoskeleton.


Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , Mice , Animals , Dystrophin/genetics , Dystrophin/metabolism , Muscular Dystrophy, Duchenne/metabolism , Mechanotransduction, Cellular , Multiomics , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Cytoskeleton/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism
14.
NPJ Regen Med ; 8(1): 16, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36922514

ABSTRACT

We developed an on-slide decellularization approach to generate acellular extracellular matrix (ECM) myoscaffolds that can be repopulated with various cell types to interrogate cell-ECM interactions. Using this platform, we investigated whether fibrotic ECM scarring affected human skeletal muscle progenitor cell (SMPC) functions that are essential for myoregeneration. SMPCs exhibited robust adhesion, motility, and differentiation on healthy muscle-derived myoscaffolds. All SPMC interactions with fibrotic myoscaffolds from dystrophic muscle were severely blunted including reduced motility rate and migration. Furthermore, SMPCs were unable to remodel laminin dense fibrotic scars within diseased myoscaffolds. Proteomics and structural analysis revealed that excessive collagen deposition alone is not pathological, and can be compensatory, as revealed by overexpression of sarcospan and its associated ECM receptors in dystrophic muscle. Our in vivo data also supported that ECM remodeling is important for SMPC engraftment and that fibrotic scars may represent one barrier to efficient cell therapy.

15.
Neuron ; 108(6): 1045-1057.e6, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33125872

ABSTRACT

Precise patterns of synaptic connections between neurons are encoded in their genetic programs. Here, we use single-cell RNA sequencing to profile neuronal transcriptomes at multiple stages in the developing Drosophila visual system. We devise an efficient strategy for profiling neurons at multiple time points in a single pool, thereby minimizing batch effects and maximizing the reliability of time-course data. A transcriptional atlas spanning multiple stages is generated, including more than 150 distinct neuronal populations; of these, 88 are followed through synaptogenesis. This analysis reveals a common (pan-neuronal) program unfolding in highly coordinated fashion in all neurons, including genes encoding proteins comprising the core synaptic machinery and membrane excitability. This program is overlaid by cell-type-specific programs with diverse cell recognition molecules expressed in different combinations and at different times. We propose that a pan-neuronal program endows neurons with the competence to form synapses and that cell-type-specific programs control synaptic specificity.


Subject(s)
Drosophila/physiology , Neurogenesis/physiology , Neurons/physiology , Visual Pathways/physiology , Animals , Axons/physiology , Synapses/physiology , Transcriptome
16.
Elife ; 82019 11 05.
Article in English | MEDLINE | ID: mdl-31687928

ABSTRACT

Patterns of synaptic connectivity are remarkably precise and complex. Single-cell RNA sequencing has revealed a vast transcriptional diversity of neurons. Nevertheless, a clear logic underlying the transcriptional control of neuronal connectivity has yet to emerge. Here, we focused on Drosophila T4/T5 neurons, a class of closely related neuronal subtypes with different wiring patterns. Eight subtypes of T4/T5 neurons are defined by combinations of two patterns of dendritic inputs and four patterns of axonal outputs. Single-cell profiling during development revealed distinct transcriptional programs defining each dendrite and axon wiring pattern. These programs were defined by the expression of a few transcription factors and different combinations of cell surface proteins. Gain and loss of function studies provide evidence for independent control of different wiring features. We propose that modular transcriptional programs for distinct wiring features are assembled in different combinations to generate diverse patterns of neuronal connectivity.


Subject(s)
Axons/physiology , Dendrites/physiology , Neural Conduction , Transcription, Genetic , Animals , Cells, Cultured , Drosophila , Gene Expression Regulation , Single-Cell Analysis
17.
BMC Genomics ; 9: 13, 2008 Jan 14.
Article in English | MEDLINE | ID: mdl-18194514

ABSTRACT

BACKGROUND: Most retained introns found in human cDNAs generated by high-throughput sequencing projects seem to result from underspliced transcripts, and thus they capture intermediate steps of pre-mRNA splicing. On the other hand, mutations in splice sites cause exon skipping of the respective exon or activation of pre-existing cryptic sites. Both types of events reflect properties of the splicing mechanism. RESULTS: The retained introns were significantly shorter than constitutive ones, and skipped exons are shorter than exons with cryptic sites. Both donor and acceptor splice sites of retained introns were weaker than splice sites of constitutive introns. The authentic acceptor sites affected by mutations were significantly weaker in exons with activated cryptic sites than in skipped exons. The distance from a mutated splice site to the nearest equivalent site is significantly shorter in cases of activated cryptic sites compared to exon skipping events. The prevalence of retained introns within genes monotonically increased in the 5'-to-3' direction (more retained introns close to the 3'-end), consistent with the model of co-transcriptional splicing. The density of exonic splicing enhancers was higher, and the density of exonic splicing silencers lower in retained introns compared to constitutive ones and in exons with cryptic sites compared to skipped exons. CONCLUSION: Thus the analysis of retained introns in human cDNA, exons skipped due to mutations in splice sites and exons with cryptic sites produced results consistent with the intron definition mechanism of splicing of short introns, co-transcriptional splicing, dependence of splicing efficiency on the splice site strength and the density of candidate exonic splicing enhancers and silencers. These results are consistent with other, recently published analyses.


Subject(s)
Exons/genetics , Introns/genetics , Mutation/genetics , RNA Splice Sites/genetics , RNA Splicing/genetics , Transcription, Genetic/genetics , Alternative Splicing/genetics , Computational Biology/statistics & numerical data , DNA Mutational Analysis , Databases, Nucleic Acid , Evolution, Molecular , Genetic Variation , Genomics , Human Genome Project , Humans , Models, Genetic , RNA Precursors , Regulatory Elements, Transcriptional/genetics
18.
Neuron ; 98(1): 109-126.e8, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29576390

ABSTRACT

Screens for genes that orchestrate neural circuit formation in mammals have been hindered by practical constraints of germline mutagenesis. To overcome these limitations, we combined RNA-seq with somatic CRISPR mutagenesis to study synapse development in the mouse retina. Here synapses occur between cellular layers, forming two multilayered neuropils. The outer neuropil, the outer plexiform layer (OPL), contains synapses made by rod and cone photoreceptor axons on rod and cone bipolar dendrites, respectively. We used RNA-seq to identify selectively expressed genes encoding cell surface and secreted proteins and CRISPR-Cas9 electroporation with cell-specific promoters to assess their roles in OPL development. Among the genes identified in this way are Wnt5a and Wnt5b. They are produced by rod bipolars and activate a non-canonical signaling pathway in rods to regulate early OPL patterning. The approach we use here can be applied to other parts of the brain.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats/physiology , Mutagenesis/physiology , Neuropil/metabolism , Retina/metabolism , Sequence Analysis, RNA/methods , Wnt Signaling Pathway/physiology , Animals , Animals, Newborn , Female , Male , Mice , Mice, Transgenic , Neuropil/chemistry , Rabbits , Retina/chemistry , Retina/growth & development
19.
G3 (Bethesda) ; 6(2): 391-6, 2015 Dec 12.
Article in English | MEDLINE | ID: mdl-26656153

ABSTRACT

RNA editing usually affects only a fraction of expressed transcripts and there is a vast amount of variation in editing levels of ADAR (adenosine deaminase, RNA-specific) targets. Here we explore natural genetic variation affecting editing levels of particular sites in 81 natural strains of Drosophila melanogaster. The analysis of associations between editing levels and single-nucleotide polymorphisms allows us to map putative cis-regulatory regions affecting editing of 16 A-to-I editing sites (cis-RNA editing quantitative trait loci or cis-edQTLs, P < 10(-8)). The observed changes in editing levels are validated by independent molecular technique. All identified regulatory variants are located in close proximity of modulated editing sites. Moreover, colocalized editing sites are often regulated by same loci. Similar to expression and splicing QTL studies, the characterization of edQTLs will greatly expand our understanding of cis-regulatory evolution of gene expression.


Subject(s)
Adenosine Deaminase/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , RNA Editing , Animals , Chromosome Mapping , Gene Expression Profiling , Genetic Variation , Quantitative Trait Loci , Reproducibility of Results , Transcriptome
20.
Biol Direct ; 6: 8, 2011 Feb 09.
Article in English | MEDLINE | ID: mdl-21306633

ABSTRACT

Posttranslationally modified amino acids are chemically distinct types of amino acids and in terms of evolution they might behave differently from their non-modified counterparts. In order to check this possibility, we reconstructed the evolutionary history of phosphorylated serines in several groups of organisms. Comparisons of substitution vectors have revealed some significant differences in the evolution of modified and corresponding non-modified amino acids. In particular, phosphoserines are more frequently substituted to aspartate and glutamate, compared to non-phosphorylated serines.


Subject(s)
Evolution, Molecular , Phosphoserine/metabolism , Amino Acid Substitution/genetics , Animals , Databases, Protein , Humans , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL