Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Curr Cardiol Rep ; 25(5): 295-305, 2023 05.
Article in English | MEDLINE | ID: mdl-36930454

ABSTRACT

PURPOSE OF REVIEW: Congenital heart disease includes a wide variety of structural cardiac defects, the most severe of which are single ventricle defects (SVD). These patients suffer from significant morbidity and mortality; however, our understanding of the developmental etiology of these conditions is limited. Model organisms offer a window into normal and abnormal cardiogenesis yet often fail to recapitulate complex congenital heart defects seen in patients. The use of induced pluripotent stem cells (iPSCs) derived from patients with single-ventricle defects opens the door to studying SVD in patient-derived cardiomyocytes (iPSC-CMs) in a variety of different contexts, including organoids and chamber-specific cardiomyocytes. As the genetic and cellular causes of SVD are not well defined, patient-derived iPSC-CMs hold promise for uncovering mechanisms of disease development and serve as a platform for testing therapies. The purpose of this review is to highlight recent advances in iPSC-based models of SVD. RECENT FINDINGS: Recent advances in patient-derived iPSC-CM differentiation, as well as the development of both chamber-specific and non-myocyte cardiac cell types, make it possible to model the complex genetic and molecular architecture involved in SVD development. Moreover, iPSC models have become increasingly complex with the generation of 3D organoids and engineered cardiac tissues which open the door to new mechanistic insight into SVD development. Finally, iPSC-CMs have been used in proof-of-concept studies that the molecular underpinnings of SVD may be targetable for future therapies. While each platform has its advantages and disadvantages, the use of patient-derived iPSC-CMs offers a window into patient-specific cardiogenesis and SVD development. Advancement in stem-cell based modeling of SVD promises to revolutionize our understanding of the developmental etiology of SVD and provides a tool for developing and testing new therapies.


Subject(s)
Heart Defects, Congenital , Induced Pluripotent Stem Cells , Humans , Cell Differentiation/genetics , Myocytes, Cardiac
2.
Res Sq ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38947076

ABSTRACT

Background: The demand for genetic services has outpaced the availability of resources, challenging clinicians untrained in genetic integration into clinical decision-making. The UTHealth Adult Cardiovascular Genomics Certificate (CGC) program trains non-genetic healthcare professionals to recognize, assess, and refer patients with heritable cardiovascular diseases. This asynchronous online course includes 24 modules in three tiers of increasing complexity, using realistic clinical scenarios, interactive dialogues, quizzes, and tests to reinforce learning. We hypothesized that the CGC will increase genomic competencies in this underserved audience and encourage applying genomic concepts in clinical practice. Methods: Required course evaluations include pre- and post-assessments, knowledge checks in each module, and surveys for module-specific feedback. After 6 months, longitudinal feedback surveys gathered data on the long-term impact of the course on clinical practice and conducted focused interviews with learners. Results: The CGC was accredited in September 2022. Principal learners were nurses (24%), nurse practitioners (21%), physicians (16%), and physician assistants. Scores of 283 learners in paired pre- and post-assessments increased specific skills related to recognizing heritable diseases, understanding inheritance patterns, and interpreting genetic tests. Interviews highlighted the CGC's modular structure and linked resources as key strengths. Learners endorsed confidence to use genetic information in clinical practice, such as discussing genetic concepts and risks with patients and referring patients for genetic testing. Learners were highly likely to recommend the CGC to colleagues, citing its role in enhancing heritable disease awareness. Conclusions: The CGC program effectively empowers non-genetic clinicians to master genomic competencies, fostering collaboration to prevent deaths from heritable cardiovascular diseases, and potentially transforming healthcare education and clinical practice.

3.
JTCVS Tech ; 21: 188-194, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37854848

ABSTRACT

Objectives: The Impella 5.5 has been successfully used in the adult population; however, safety and efficacy data in patients aged less than 18 years are limited. Methods: Six pediatric patients, aged 13 to 16 years and weighing 45 to 113 kg, underwent axillary artery graft placement and attempted placement of the Impella 5.5 device at our institution between August 2020 and March 2023. Results: Indications for implantation were heart failure secondary to myocarditis (2), rejection of prior orthotopic heart transplant, idiopathic dilated cardiomyopathy (2), and heart failure after transposition of the great arteries repair. Placement was unsuccessful in a 13.8-year-old female patient due to prohibitively acute angulation of the right subclavian artery, and venoarterial extracorporeal membrane oxygenation cannulation was performed via the axillary graft. In 5 patients with successful Impella 5.5 placement, median duration of support was 13.5 days (range, 7-42 days). One experienced cardiac arrest secondary to coagulation-associated device failure, requiring temporary HeartMate3 implantation. Four patients were bridged to transplant; 3 patients received a transplant directly from Impella 5.5, and 1 patient received a transplant after HeartMate3. The final patient received the HeartMate3 on Impella day 42 and is awaiting transplant. Conclusions: Although exact size cutoffs and anatomy are still being determined, our experience provides a framework for use of the Impella 5.5 in adolescents.

4.
Circ Genom Precis Med ; 16(4): 317-327, 2023 08.
Article in English | MEDLINE | ID: mdl-37409478

ABSTRACT

BACKGROUND: With genetic testing advancements, the burden of incidentally identified cardiac disease-associated gene variants is rising. These variants may carry a risk of sudden cardiac death, highlighting the need for accurate diagnostic interpretation. We sought to identify pathogenic hotspots in sudden cardiac death-associated genes using amino acid-level signal-to-noise (S:N) analysis and develop a web-based precision medicine tool, DiscoVari, to improve variant evaluation. METHODS: The minor allele frequency of putatively pathogenic variants was derived from cohort-based cardiomyopathy and channelopathy studies in the literature. We normalized disease-associated minor allele frequencies to rare variants in an ostensibly healthy population (Genome Aggregation Database) to calculate amino acid-level S:N. Amino acids with S:N above the gene-specific threshold were defined as hotspots. DiscoVari was built using JavaScript ES6 and using open-source JavaScript library ReactJS, web development framework Next.js, and JavaScript runtime NodeJS. We validated the ability of DiscoVari to identify pathogenic variants using variants from ClinVar and individuals clinically evaluated at the Duke University Hospitals with cardiac genetic testing. RESULTS: We developed DiscoVari as an internet-based tool for S:N-based variant hotspots. Upon validation, a higher proportion of ClinVar likely pathogenic/pathogenic variants localized to DiscoVari hotspots (43.1%) than likely benign/benign variants (17.8%; P<0.0001). Further, 75.3% of ClinVar variants reclassified to likely pathogenic/pathogenic were in hotspots, compared with 41.3% of those reclassified as variants of uncertain significance (P<0.0001) and 23.4% of those reclassified as likely benign/benign (P<0.0001). Of the clinical cohort variants, 73.1% of likely pathogenic/pathogenic were in hotspots, compared with 0.0% of likely benign/benign (P<0.01). CONCLUSIONS: DiscoVari reliably identifies disease-susceptible amino acid residues to evaluate variants by searching amino acid-specific S:N ratios.


Subject(s)
Cardiomyopathies , Channelopathies , Humans , Genetic Variation , Channelopathies/genetics , Precision Medicine , Virulence , Cardiomyopathies/genetics , Death, Sudden, Cardiac/pathology , Amino Acids
5.
J Pers Med ; 12(5)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35629155

ABSTRACT

Background: Hypertrophic cardiomyopathy (HCM) is the most common heritable cardiomyopathy and can predispose individuals to sudden death. Most pediatric HCM patients host a known pathogenic variant in a sarcomeric gene. With the increase in exome sequencing (ES) in clinical settings, incidental variants in HCM-associated genes are being identified more frequently. Diagnostic interpretation of incidental variants is crucial to enhance clinical patient management. We sought to use amino acid-level signal-to-noise (S:N) analysis to establish pathogenic hotspots in sarcomeric HCM-associated genes as well as to refine the 2015 American College of Medical Genetics (ACMG) criteria to predict incidental variant pathogenicity. Methods and Results: Incidental variants in HCM genes (MYBPC3, MYH7, MYL2, MYL3, ACTC1, TPM1, TNNT2, TNNI3, and TNNC1) were obtained from a clinical ES referral database (Baylor Genetics) and compared to rare population variants (gnomAD) and variants from HCM literature cohort studies. A subset of the ES cohort was clinically evaluated at Texas Children's Hospital. We compared the frequency of ES and HCM variants at specific amino acid locations in coding regions to rare variants (MAF < 0.0001) in gnomAD. S:N ratios were calculated at the gene- and amino acid-level to identify pathogenic hotspots. ES cohort variants were re-classified using ACMG criteria with S:N analysis as a correlate for PM1 criteria, which reduced the burden of variants of uncertain significance. In the clinical validation cohort, the majority of probands with cardiomyopathy or family history hosted likely pathogenic or pathogenic variants. Conclusions: Incidental variants in HCM-associated genes were common among clinical ES referrals, although the majority were not disease-associated. Leveraging amino acid-level S:N as a clinical tool may improve the diagnostic discriminatory ability of ACMG criteria by identifying pathogenic hotspots.

SELECTION OF CITATIONS
SEARCH DETAIL