Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Appl Veg Sci ; 22(1): 150-167, 2019 Jan.
Article in English | MEDLINE | ID: mdl-31130818

ABSTRACT

QUESTIONS: How do plant communities on zonal loamy vs. sandy soils vary across the full maritime Arctic bioclimate gradient? How are plant communities of these areas related to existing vegetation units of the European Vegetation Classification? What are the main environmental factors controlling transitions of vegetation along the bioclimate gradient? LOCATION: 1700-km Eurasia Arctic Transect (EAT), Yamal Peninsula and Franz Josef Land (FJL), Russia. METHODS: The Braun-Blanquet approach was used to sample mesic loamy and sandy plots on 14 total study sites at six locations, one in each of the five Arctic bioclimate subzones and the forest-tundra transition. Trends in soil factors, cover of plant growth forms (PGFs) and species diversity were examined along the summer warmth index (SWI) gradient and on loamy and sandy soils. Classification and ordination were used to group the plots and to test relationships between vegetation and environmental factors. RESULTS: Clear, mostly non-linear, trends occurred for soil factors, vegetation structure and species diversity along the climate gradient. Cluster analysis revealed seven groups with clear relationships to subzone and soil texture. Clusters at the ends of the bioclimate gradient (forest-tundra and polar desert) had many highly diagnostic taxa, whereas clusters from the Yamal Peninsula had only a few. Axis 1 of a DCA was strongly correlated with latitude and summer warmth; Axis 2 was strongly correlated with soil moisture, percentage sand and landscape age. CONCLUSIONS: Summer temperature and soil texture have clear effects on tundra canopy structure and species composition, with consequences for ecosystem properties. Each layer of the plant canopy has a distinct region of peak abundance along the bioclimate gradient. The major vegetation types are weakly aligned with described classes of the European Vegetation Checklist, indicating a continuous floristic gradient rather than distinct subzone regions. The study provides ground-based vegetation data for satellite-based interpretations of the western maritime Eurasian Arctic, and the first vegetation data from Hayes Island, Franz Josef Land, which is strongly separated geographically and floristically from the rest of the gradient and most susceptible to on-going climate change.

2.
Mol Phylogenet Evol ; 76: 75-92, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24631857

ABSTRACT

The origin of the arctic flora covering the northernmost treeless areas is still poorly understood. Arctic plants may have evolved in situ or immigrated from the adjacent ecosystems. Frequently arctic species have disjunctive distributions between the Arctic and high mountain systems of the temperate zone. This pattern may result from long distance dispersal or from glacial plant migrations and extinctions of intermediate populations. The hemiparasitic genus Pedicularis is represented in the Arctic by c. 28 taxa and ranks among the six most species-rich vascular plant genera of this region. In this study, we test the hypothesis that these lineages evolved from predecessors occurring in northern temperate mountain ranges, many of which are current centers of diversity for the genus. We generated a nuclear ribosomal and chloroplast DNA phylogeny including almost all of the arctic taxa and nearly half of the genus as a whole. The arctic taxa of Pedicularis evolved 12-14 times independently and are mostly nested in lineages that otherwise occur in the high mountains of Eurasia and North America. It appears that only three arctic lineages arose from the present-day center of diversity of the genus, in the Hengduan Mountains and Himalayas. Two lineages are probably of lowland origin. Arctic taxa of Pedicularis show considerable niche conservatism with respect to soil moisture and grow predominantly in moist to wet soils. The studied characteristics of ecology, morphology, and chromosome numbers of arctic Pedicularis show a heterogeneous pattern of evolution. The directions of morphological changes among the arctic lineages show opposing trends. Arctic taxa are chiefly diploid, the few tetraploid chromosome numbers of the genus were recorded only for arctic taxa. Five arctic Pedicularis are annuals or biennials, life forms otherwise rare in the Arctic. Other genera of the Orobanchaceae consist also of an elevated number of short-lived species, thus hemiparasitism may favor this life form in the Arctic.


Subject(s)
Altitude , Ecosystem , Pedicularis/genetics , Phylogeny , Arctic Regions , DNA, Chloroplast/genetics , DNA, Ribosomal/genetics , Ecology , Orobanchaceae/genetics , Pedicularis/classification , Sequence Analysis, DNA
3.
Sci Total Environ ; 764: 142888, 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33131863

ABSTRACT

Functional traits of mountain grassland communities strongly depend upon temperature variation along elevational gradients. However, little is known to what degree the direction of such trait-temperature relationships is shaped by other environmental factors or land-use types. Here, we investigated context-dependent patterns of plant functional trait variation in alpine grassland communities. Specifically, we tested whether temperature (degree-days) variation along an elevational gradient, interacts with water availability, soil properties and land-use type to moderate such patterns. We used cover-abundance and plant-trait data from 236 grassland relevés of the Swiss Alps along an elevational range of 500-2400 m a.s.l. with plant traits being specific leaf area (L), seed releasing height (H) and seed mass (S). We used indices capturing different dimensions of plant functional diversity as response variables, i.e. community weighted mean (CWM), trait range (TR) and functional dispersion (FDis). Land-use type and water availability interacted significantly with degree-days determining the responses of multiple plant traits community attributes. Specific leaf area (CWML) and seed releasing height (CWMH) increased with temperature in meadows and pastures, while no significant trend was detected in fallows. In meadows, seed mass (CWMS) increased and was at the same time less constrained (higher TRS) with increasing temperature. In pastures and fallows, by contrast, no seed trait-temperature trends were detected. In addition, water availability interacted with increasing temperature affecting functional dispersion: FDisL decreased only in sites with higher site water balance and TRS and FDisS increased in sites with low mean summer precipitation. Our findings suggest that functional diversity of grasslands might respond to climate warming with strong ecological differences depending on land-use types and water availability. Based on our results, managed meadows and pastures most likely change in direction to species with more acquisitive strategies, whereas in fallows, no specific trajectory of change is expected.


Subject(s)
Biodiversity , Grassland , Switzerland , Temperature , Water
4.
Ann Bot ; 104(7): 1313-22, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19797423

ABSTRACT

BACKGROUND AND AIMS: Gene flow and genetic variability within and among alpine plant populations can be greatly influenced by the steep environmental gradients and heterogeneous topography of alpine landscapes. In this study, the effects are examined of natural isolation of alpine habitats on genetic diversity and geographic structure in populations of C. thyrsoides, a rare and isolated European Alpine monocarpic perennial with limited seed dispersal capacity. METHODS: Molecular diversity was analysed for 736 individuals from 32 populations in the Swiss Alps and adjacent Jura mountains using five polymorphic microsatellite loci. Pollen flow was estimated using pollen grain-sized fluorescent powder. In addition, individual-based Bayesian approaches were applied to examine population structure. KEY RESULTS: High within-population genetic diversity (H(E) = 0.76) and a relatively low inbreeding coefficient (F(IS) = 0.022) were found. Genetic differentiation among populations measured with a standardized measure was considerable (G'(ST) = 0.53). A significant isolation-by-distance relationship was found (r = 0.62, P < 0.001) and a significant geographic sub-structure, coinciding with proposed postglacial migration patterns. Altitudinal location and size of populations did not influence molecular variation. Direct measures of pollen flow revealed that insect-mediated pollen dispersal was restricted to short distances within a population. CONCLUSIONS: The natural isolation of suitable habitats for C. thyrsoides restricts gene flow among the populations as expected for a monocarpic species with very limited seed dispersal capacities. The observed high within-population genetic diversity in this rare monocarpic perennial is best explained by its outcrossing behaviour, long-lived individuals and overlapping generations. Despite the high within-population genetic diversity, the considerable genetic differentiation and the clear western-eastern differentiation in this species merits consideration in future conservation efforts.


Subject(s)
Altitude , Campanulaceae/genetics , Gene Flow , Genetic Variation , Animals , Ecosystem , Geography , Ice Cover , Inbreeding , Microsatellite Repeats , Population Density , Switzerland
5.
PLoS One ; 11(11): e0165700, 2016.
Article in English | MEDLINE | ID: mdl-27806090

ABSTRACT

Quaternary climate fluctuations have profoundly affected the current distribution patterns and genetic structures of many plant and animal species in the Qinghai-Tibetan Plateau (QTP) and adjacent mountain ranges, e.g. Tianshan (TSR), Altay, etc. In this greater area disjunct distributions are prominent but have nevertheless received little attention with respect to the historical processes involved. Here, we focus on Pedicularis kansuensis to test whether the current QTP and TSR disjunction is the result of a recent Holocene range expansion involving dispersal across arid land bridge(s) or a Pleistocene range fragmentation involving persistence in refugia. Two chloroplast DNA spacers were sequenced for 319 individuals from 34 populations covering the entire distribution range of this species in China. We found a total of 17 haplotypes of which all occurred in the QTP, and only five in the TSR. Overall genetic diversity was high (HT = 0.882, HS = 0.559) and higher in the QTP than in the TSR. Genetic differentiation among regions and populations was relatively low (GST = 0.366) and little evidence for a phylogeographic pattern emerged. The divergence times for the four main lineages could be dated to the early Pleistocene. Surprisingly, the two ubiquitous haplotypes diverged just before or around the Last Glacial Maximum (LGM) and were found in different phylogenetic lineages. The Species Distribution Model suggested a disappearance of P. kansuensis from the TSR during the LGM in contrast to a relatively constant potential distribution in the QTP. We conclude that P. kansuensis colonized the TSR after the LGM. The improbable long-distance dispersal by wind or water across arid land seed flow may well have had birds or men as vector.


Subject(s)
DNA, Chloroplast/genetics , Pedicularis/genetics , Sequence Analysis, DNA/methods , China , Climate , Demography , Evolution, Molecular , Genetic Variation , Genetics, Population , Phylogeny , Phylogeography
SELECTION OF CITATIONS
SEARCH DETAIL