Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
BMC Bioinformatics ; 19(1): 183, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29801439

ABSTRACT

BACKGROUND: A quantitative trait locus (QTL) is a genomic region that correlates with a phenotype. Most of the experimental information about QTL mapping studies is described in tables of scientific publications. Traditional text mining techniques aim to extract information from unstructured text rather than from tables. We present QTLTableMiner++ (QTM), a table mining tool that extracts and semantically annotates QTL information buried in (heterogeneous) tables of plant science literature. QTM is a command line tool written in the Java programming language. This tool takes scientific articles from the Europe PMC repository as input, extracts QTL tables using keyword matching and ontology-based concept identification. The tables are further normalized using rules derived from table properties such as captions, column headers and table footers. Furthermore, table columns are classified into three categories namely column descriptors, properties and values based on column headers and data types of cell entries. Abbreviations found in the tables are expanded using the Schwartz and Hearst algorithm. Finally, the content of QTL tables is semantically enriched with domain-specific ontologies (e.g. Crop Ontology, Plant Ontology and Trait Ontology) using the Apache Solr search platform and the results are stored in a relational database and a text file. RESULTS: The performance of the QTM tool was assessed by precision and recall based on the information retrieved from two manually annotated corpora of open access articles, i.e. QTL mapping studies in tomato (Solanum lycopersicum) and in potato (S. tuberosum). In summary, QTM detected QTL statements in tomato with 74.53% precision and 92.56% recall and in potato with 82.82% precision and 98.94% recall. CONCLUSION: QTM is a unique tool that aids in providing QTL information in machine-readable and semantically interoperable formats.


Subject(s)
Data Mining/methods , Quantitative Trait Loci , Software , Algorithms , Computer Graphics , Databases, Factual , Solanum lycopersicum/genetics , Publications , Semantics , Solanum tuberosum/genetics
2.
Nucleic Acids Res ; 42(Web Server issue): W100-6, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24861615

ABSTRACT

We present the Proteomics Identifications and Quantitations Data Management and Integration Service or PIQMIe that aids in reliable and scalable data management, analysis and visualization of semi-quantitative mass spectrometry based proteomics experiments. PIQMIe readily integrates peptide and (non-redundant) protein identifications and quantitations from multiple experiments with additional biological information on the protein entries, and makes the linked data available in the form of a light-weight relational database, which enables dedicated data analyses (e.g. in R) and user-driven queries. Using the web interface, users are presented with a concise summary of their proteomics experiments in numerical and graphical forms, as well as with a searchable protein grid and interactive visualization tools to aid in the rapid assessment of the experiments and in the identification of proteins of interest. The web server not only provides data access through a web interface but also supports programmatic access through RESTful web service. The web server is available at http://piqmie.semiqprot-emc.cloudlet.sara.nl or http://www.bioinformatics.nl/piqmie. This website is free and open to all users and there is no login requirement.


Subject(s)
Proteomics/methods , Software , Humans , Internet , Mass Spectrometry , Mesenchymal Stem Cells/metabolism , Peptides/analysis , Proteins/chemistry
3.
Nucleic Acids Res ; 42(Database issue): D917-21, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24225318

ABSTRACT

Selectome (http://selectome.unil.ch/) is a database of positive selection, based on a branch-site likelihood test. This model estimates the number of nonsynonymous substitutions (dN) and synonymous substitutions (dS) to evaluate the variation in selective pressure (dN/dS ratio) over branches and over sites. Since the original release of Selectome, we have benchmarked and implemented a thorough quality control procedure on multiple sequence alignments, aiming to provide minimum false-positive results. We have also improved the computational efficiency of the branch-site test implementation, allowing larger data sets and more frequent updates. Release 6 of Selectome includes all gene trees from Ensembl for Primates and Glires, as well as a large set of vertebrate gene trees. A total of 6810 gene trees have some evidence of positive selection. Finally, the web interface has been improved to be more responsive and to facilitate searches and browsing.


Subject(s)
Databases, Nucleic Acid , Selection, Genetic , Genetic Variation , Genomics/standards , Humans , Internet , Quality Control , Sequence Alignment
4.
PLoS Genet ; 7(6): e1002070, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21695235

ABSTRACT

The plant-pathogenic fungus Mycosphaerella graminicola (asexual stage: Septoria tritici) causes septoria tritici blotch, a disease that greatly reduces the yield and quality of wheat. This disease is economically important in most wheat-growing areas worldwide and threatens global food production. Control of the disease has been hampered by a limited understanding of the genetic and biochemical bases of pathogenicity, including mechanisms of infection and of resistance in the host. Unlike most other plant pathogens, M. graminicola has a long latent period during which it evades host defenses. Although this type of stealth pathogenicity occurs commonly in Mycosphaerella and other Dothideomycetes, the largest class of plant-pathogenic fungi, its genetic basis is not known. To address this problem, the genome of M. graminicola was sequenced completely. The finished genome contains 21 chromosomes, eight of which could be lost with no visible effect on the fungus and thus are dispensable. This eight-chromosome dispensome is dynamic in field and progeny isolates, is different from the core genome in gene and repeat content, and appears to have originated by ancient horizontal transfer from an unknown donor. Synteny plots of the M. graminicola chromosomes versus those of the only other sequenced Dothideomycete, Stagonospora nodorum, revealed conservation of gene content but not order or orientation, suggesting a high rate of intra-chromosomal rearrangement in one or both species. This observed "mesosynteny" is very different from synteny seen between other organisms. A surprising feature of the M. graminicola genome compared to other sequenced plant pathogens was that it contained very few genes for enzymes that break down plant cell walls, which was more similar to endophytes than to pathogens. The stealth pathogenesis of M. graminicola probably involves degradation of proteins rather than carbohydrates to evade host defenses during the biotrophic stage of infection and may have evolved from endophytic ancestors.


Subject(s)
Ascomycota/genetics , Chromosomes, Fungal/genetics , Genome, Fungal/genetics , Ascomycota/metabolism , Ascomycota/pathogenicity , Gene Rearrangement , Plant Diseases/microbiology , Synteny , Triticum/microbiology
5.
Stud Health Technol Inform ; 175: 59-68, 2012.
Article in English | MEDLINE | ID: mdl-22941988

ABSTRACT

One of the important questions in biological evolution is to know if certain changes along protein coding genes have contributed to the adaptation of species. This problem is known to be biologically complex and computationally very expensive. It, therefore, requires efficient Grid or cluster solutions to overcome the computational challenge. We have developed a Grid-enabled tool (gcodeml) that relies on the PAML (codeml) package to help analyse large phylogenetic datasets on both Grids and computational clusters. Although we report on results for gcodeml, our approach is applicable and customisable to related problems in biology or other scientific domains.


Subject(s)
Algorithms , DNA/genetics , Data Mining/methods , Databases, Genetic , Evolution, Molecular , Proteins/genetics , Sequence Analysis/methods , Software , User-Computer Interface
6.
Trends Genet ; 24(11): 539-51, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18819722

ABSTRACT

Orthology is a key evolutionary concept in many areas of genomic research. It provides a framework for subjects as diverse as the evolution of genomes, gene functions, cellular networks and functional genome annotation. Although orthologous proteins usually perform equivalent functions in different species, establishing true orthologous relationships requires a phylogenetic approach, which combines both trees and graphs (networks) using reliable species phylogeny and available genomic data from more than two species, and an insight into the processes of molecular evolution. Here, we evaluate the available bioinformatics tools and provide a set of guidelines to aid researchers in choosing the most appropriate tool for any situation.


Subject(s)
Evolution, Molecular , Genomics/methods , Phylogeny , Sequence Homology , Animals , Databases, Genetic , Genome , Humans , Proteins/chemistry
7.
Bioinformatics ; 26(19): 2482-3, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20679333

ABSTRACT

UNLABELLED: Multi-netclust is a simple tool that allows users to extract connected clusters of data represented by different networks given in the form of matrices. The tool uses user-defined threshold values to combine the matrices, and uses a straightforward, memory-efficient graph algorithm to find clusters that are connected in all or in either of the networks. The tool is written in C/C++ and is available either as a form-based or as a command-line-based program running on Linux platforms. The algorithm is fast, processing a network of > 10(6) nodes and 10(8) edges takes only a few minutes on an ordinary computer. AVAILABILITY: http://www.bioinformatics.nl/netclust/.


Subject(s)
Cluster Analysis , Software , Algorithms , Databases, Factual , User-Computer Interface
9.
Nucleic Acids Res ; 37(Web Server issue): W428-34, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19494185

ABSTRACT

Current protein sequence databases employ different classification schemes that often provide conflicting annotations, especially for poorly characterized proteins. ProGMap (Protein Group Mappings, http://www.bioinformatics.nl/progmap) is a web-tool designed to help researchers and database annotators to assess the coherence of protein groups defined in various databases and thereby facilitate the annotation of newly sequenced proteins. ProGMap is based on a non-redundant dataset of over 6.6 million protein sequences which is mapped to 240,000 protein group descriptions collected from UniProt, RefSeq, Ensembl, COG, KOG, OrthoMCL-DB, HomoloGene, TRIBES and PIRSF. ProGMap combines the underlying classification schemes via a network of links constructed by a fast and fully automated mapping approach originally developed for document classification. The web interface enables queries to be made using sequence identifiers, gene symbols, protein functions or amino acid and nucleotide sequences. For the latter query type BLAST similarity search and QuickMatch identity search services have been incorporated, for finding sequences similar (or identical) to a query sequence. ProGMap is meant to help users of high throughput methodologies who deal with partially annotated genomic data.


Subject(s)
Proteins/classification , Software , Databases, Protein , Internet , Proteins/chemistry , Sequence Analysis, Protein , Systems Integration , User-Computer Interface
10.
PeerJ ; 8: e8214, 2020.
Article in English | MEDLINE | ID: mdl-31934500

ABSTRACT

Structural variants (SVs) are an important class of genetic variation implicated in a wide array of genetic diseases including cancer. Despite the advances in whole genome sequencing, comprehensive and accurate detection of SVs in short-read data still poses some practical and computational challenges. We present sv-callers, a highly portable workflow that enables parallel execution of multiple SV detection tools, as well as provide users with example analyses of detected SV callsets in a Jupyter Notebook. This workflow supports easy deployment of software dependencies, configuration and addition of new analysis tools. Moreover, porting it to different computing systems requires minimal effort. Finally, we demonstrate the utility of the workflow by performing both somatic and germline SV analyses on different high-performance computing systems.

11.
J Biochem Biophys Methods ; 70(6): 1215-23, 2008 Apr 24.
Article in English | MEDLINE | ID: mdl-17604112

ABSTRACT

Development and testing of protein classification algorithms are hampered by the fact that the protein universe is characterized by groups vastly different in the number of members, in average protein size, similarity within group, etc. Datasets based on traditional cross-validation (k-fold, leave-one-out, etc.) may not give reliable estimates on how an algorithm will generalize to novel, distantly related subtypes of the known protein classes. Supervised cross-validation, i.e., selection of test and train sets according to the known subtypes within a database has been successfully used earlier in conjunction with the SCOP database. Our goal was to extend this principle to other databases and to design standardized benchmark datasets for protein classification. Hierarchical classification trees of protein categories provide a simple and general framework for designing supervised cross-validation strategies for protein classification. Benchmark datasets can be designed at various levels of the concept hierarchy using a simple graph-theoretic distance. A combination of supervised and random sampling was selected to construct reduced size model datasets, suitable for algorithm comparison. Over 3000 new classification tasks were added to our recently established protein classification benchmark collection that currently includes protein sequence (including protein domains and entire proteins), protein structure and reading frame DNA sequence data. We carried out an extensive evaluation based on various machine-learning algorithms such as nearest neighbor, support vector machines, artificial neural networks, random forests and logistic regression, used in conjunction with comparison algorithms, BLAST, Smith-Waterman, Needleman-Wunsch, as well as 3D comparison methods DALI and PRIDE. The resulting datasets provide lower, and in our opinion more realistic estimates of the classifier performance than do random cross-validation schemes. A combination of supervised and random sampling was used to construct model datasets, suitable for algorithm comparison.


Subject(s)
Algorithms , Proteins/analysis , Proteins/classification , Proteins/chemistry , Sequence Analysis, Protein
12.
PLoS One ; 12(2): e0170762, 2017.
Article in English | MEDLINE | ID: mdl-28234898

ABSTRACT

The potential effects of non-ionizing electromagnetic fields (EMFs), such as those emitted by power-lines (in extremely low frequency range), mobile cellular systems and wireless networking devices (in radio frequency range) on human health have been intensively researched and debated. However, how exposure to these EMFs may lead to biological changes underlying possible health effects is still unclear. To reveal EMF-induced molecular changes, unbiased experiments (without a priori focusing on specific biological processes) with sensitive readouts are required. We present the first proteome-wide semi-quantitative mass spectrometry analysis of human fibroblasts, osteosarcomas and mouse embryonic stem cells exposed to three types of non-ionizing EMFs (ELF 50 Hz, UMTS 2.1 GHz and WiFi 5.8 GHz). We performed controlled in vitro EMF exposures of metabolically labeled mammalian cells followed by reliable statistical analyses of differential protein- and pathway-level regulations using an array of established bioinformatics methods. Our results indicate that less than 1% of the quantitated human or mouse proteome responds to the EMFs by small changes in protein abundance. Further network-based analysis of the differentially regulated proteins did not detect significantly perturbed cellular processes or pathways in human and mouse cells in response to ELF, UMTS or WiFi exposure. In conclusion, our extensive bioinformatics analyses of semi-quantitative mass spectrometry data do not support the notion that the short-time exposures to non-ionizing EMFs have a consistent biologically significant bearing on mammalian cells in culture.


Subject(s)
Electromagnetic Fields/adverse effects , Protein Biosynthesis/radiation effects , Proteome/radiation effects , Proteomics , Animals , Cell Line , Cell Phone , Humans , Mice , Transcriptome/radiation effects , Wireless Technology
13.
Acta Biochim Pol ; 57(3): 385-8, 2010.
Article in English | MEDLINE | ID: mdl-20725647

ABSTRACT

Genetic recombination plays an important role in the evolution of virus genomes. In this study we analyzed publicly available genomic sequences of Pepino mosaic virus (PepMV) for recombination events using several bioinformatics tools. The genome-wide analyses not only confirm the presence of previously found recombination events in PepMV but also provide the first evidence for double recombinant origin of the US2 isolate.


Subject(s)
Genome, Viral/genetics , Mosaic Viruses/genetics , Potexvirus/genetics , Recombination, Genetic/genetics , Genetic Variation/genetics , Phylogeny , Potexvirus/classification
SELECTION OF CITATIONS
SEARCH DETAIL