Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
J Cell Physiol ; 237(11): 4226-4237, 2022 11.
Article in English | MEDLINE | ID: mdl-36087347

ABSTRACT

Recently, sclerostin (SCL), a circulating glycoprotein, was proposed to be a novel myokine involved in developing metabolic disorders. The association between SCL levels and insulin resistance in skeletal muscle, liver, and adipose tissue was studied in individuals with aggravated glucose tolerance. Thus, we hypothesized that elevated circulating SCL might affect skeletal muscle insulin signaling and hepatic lipid metabolism, and aimed to investigate the effects of SCL on skeletal muscle insulin resistance and hepatic steatosis in obesity using in vitro and in vivo experimental models under hyperlipidemic conditions. In the current study, we found elevated SCL messenger RNA expression levels in myocytes in obese patients. In addition to a higher blood level, SCL was expressed at an elevated level in the skeletal muscle of mice fed a high-fat diet (HFD). Higher SCL release levels and expression were also noticed in palmitate-treated C2C12 myocytes. SCL suppression by in vivo transfection improves skeletal muscle insulin resistance and hepatic steatosis in HFD-fed mice. The treatment of C2C12 myocytes with recombinant SCL aggravated insulin signaling. Furthermore, treatment with SCL augmented lipogenic lipid deposition in human primary hepatocytes. Treatment with SCL upregulated mammalian target of rapamycin (mTOR) phosphorylation and suppressed autophagy markers, thereby causing endoplasmic reticulum (ER) stress. 4-Phenylbutyric acid, a pharmacological ER stress inhibitor, abolished the effects of SCL on insulin signaling in C2C12 myocytes and lipid accumulation in primary hepatocytes. In conclusion, SCL promotes skeletal muscle insulin resistance and hepatic steatosis by upregulating ER stress via the mTOR/autophagy-mediated pathway. The present study suggests that antagonizing SCL might be a novel therapeutic strategy for simultaneously managing insulin resistance and hepatic steatosis in obesity.


Subject(s)
Fatty Liver , Insulin Resistance , Humans , Mice , Animals , Up-Regulation , Insulin , TOR Serine-Threonine Kinases , Endoplasmic Reticulum Stress , Autophagy , Muscle, Skeletal , Diet, High-Fat/adverse effects , Obesity , Lipids , Mice, Inbred C57BL , Mammals
2.
Proc Natl Acad Sci U S A ; 112(30): E4055-64, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26159421

ABSTRACT

The available evidence suggests that the lethality of glioblastoma is driven by small subpopulations of cells that self-renew and exhibit tumorigenicity. It remains unclear whether tumorigenicity exists as a static property of a few cells or as a dynamically acquired property. We used tumor-sphere and xenograft formation as assays for tumorigenicity and examined subclones isolated from established and primary glioblastoma lines. Our results indicate that glioblastoma tumorigenicity is largely deterministic, yet the property can be acquired spontaneously at low frequencies. Further, these dynamic transitions are governed by epigenetic reprogramming through the lysine-specific demethylase 1 (LSD1). LSD depletion increases trimethylation of histone 3 lysine 4 at the avian myelocytomatosis viral oncogene homolog (MYC) locus, which elevates MYC expression. MYC, in turn, regulates oligodendrocyte lineage transcription factor 2 (OLIG2), SRY (sex determining region Y)-box 2 (SOX2), and POU class 3 homeobox 2 (POU3F2), a core set of transcription factors required for reprogramming glioblastoma cells into stem-like states. Our model suggests epigenetic regulation of key transcription factors governs transitions between tumorigenic states and provides a framework for glioblastoma therapeutic development.


Subject(s)
Brain Neoplasms/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Histone Demethylases/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic , Gene Expression Profiling , Gene Silencing , Humans , Male , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Neoplasms/metabolism , Stochastic Processes
3.
Biochim Biophys Acta ; 1863(6 Pt A): 1307-18, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27033521

ABSTRACT

Biogenesis of the primary cilium, a cellular organelle mediating various signaling pathways, is generally coordinated with cell cycle exit/re-entry. Although the dynamic cell cycle-associated profile of the primary cilium has been largely accepted, the mechanism governing the link between ciliogenesis and cell cycle progression has been poorly understood. Using a human genome-wide RNAi screen, we identify genes encoding subunits of the spliceosome and proteasome as novel regulators of ciliogenesis. We demonstrate that 1) the mRNA processing-related hits are essential for RNA expression of molecules acting in cilia disassembly, such as AURKA and PLK1, and 2) the ubiquitin-proteasome systems (UPS)-involved hits are necessary for proteolysis of molecules acting in cilia assembly, such as IFT88 and CPAP. In particular, we show that these screen hit-associated mechanisms are crucial for both cilia assembly and cell cycle arrest in response to serum withdrawal. Finally, our data suggest that the mRNA processing mechanism may modulate the UPS-dependent decay of cilia assembly regulators to control ciliary resorption-coupled cell cycle re-entry.


Subject(s)
Cell Cycle Checkpoints/genetics , Cell Cycle/genetics , Cilia/metabolism , Genome, Human/genetics , RNA Interference , Transcriptome/genetics , Blotting, Western , Cell Cycle Checkpoints/drug effects , Cell Line , Cilia/physiology , Cluster Analysis , Culture Media, Serum-Free/pharmacology , Gene Expression Profiling/methods , Gene Regulatory Networks/genetics , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Confocal , Models, Genetic , Morphogenesis/genetics , Proteome/genetics , Proteome/metabolism , Reverse Transcriptase Polymerase Chain Reaction
4.
J Neurosci Res ; 92(11): 1419-24, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25043479

ABSTRACT

Neural oncogenesis is currently incurable and invariably lethal. The development of innovative treatments for this devastating cancer will require a deeper molecular understanding of how cancer cells survive, proliferate, and escape from current therapies. In high-grade gliomas (HGGs), glioma stem cells (GSCs) may causally contribute to tumor initiation and propagation, therapeutic resistance, and subsequent recurrence of tumors. Within a tumor mass, GSCs are enriched in a hypoxic niche in which the oxidative stress levels are substantially elevated. Paradoxically, however, recent studies suggest that GSCs appear to generate less reactive oxygen species (ROS), a chemical component responsible for elevation of oxidative stress levels. To date, molecular mechanisms for how GSCs reduce oxidative stress to allow preferential survival in hypoxic areas in tumors remains elusive. This review article summarizes recent studies on the role of ROS-reducing enzymes, including peroxiredoxin 4, in detoxifying oxidative stress preferentially for GSCs in HGGs. In addition, the therapeutic potential of some of the recently identified antioxidant chemotherapeutic agents and avenues for future research in this area are discussed.


Subject(s)
Glioma/pathology , Inactivation, Metabolic/physiology , Neoplastic Stem Cells/metabolism , Oxidative Stress/drug effects , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Glioma/drug therapy , Humans , Inactivation, Metabolic/drug effects , Neoplastic Stem Cells/drug effects , Peroxiredoxins/metabolism , Reactive Oxygen Species/metabolism
5.
Mol Ther ; 21(8): 1517-25, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23732993

ABSTRACT

Saposin C-dioleoylphosphatidylserine (SapC-DOPS) nanovesicles are a nanotherapeutic which effectively target and destroy cancer cells. Here, we explore the systemic use of SapC-DOPS in several models of brain cancer, including glioblastoma multiforme (GBM), and the molecular mechanism behind its tumor-selective targeting specificity. Using two validated spontaneous brain tumor models, we demonstrate the ability of SapC-DOPS to selectively and effectively cross the blood-brain tumor barrier (BBTB) to target brain tumors in vivo and reveal the targeting to be contingent on the exposure of the anionic phospholipid phosphatidylserine (PtdSer). Increased cell surface expression of PtdSer levels was found to correlate with SapC-DOPS-induced killing efficacy, and tumor targeting in vivo was inhibited by blocking PtdSer exposed on cells. Apart from cancer cell killing, SapC-DOPS also exerted a strong antiangiogenic activity in vitro and in vivo. Interestingly, unlike traditional chemotherapy, hypoxic cells were sensitized to SapC-DOPS-mediated killing. This study emphasizes the importance of PtdSer exposure for SapC-DOPS targeting and supports the further development of SapC-DOPS as a novel antitumor and antiangiogenic agent for brain tumors.


Subject(s)
Angiogenesis Inhibitors/administration & dosage , Antineoplastic Agents/administration & dosage , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Nanoparticles/administration & dosage , Phosphatidylserines/chemistry , Saposins/metabolism , Animals , Blood-Brain Barrier/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Cell Hypoxia , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , Disease Models, Animal , Female , Glioblastoma/drug therapy , Glioblastoma/mortality , Glioblastoma/pathology , Humans , Male , Mice , Nanoparticles/chemistry , Neovascularization, Physiologic/drug effects , Recombinant Proteins/administration & dosage , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Saposins/administration & dosage , Saposins/chemistry , Xenograft Model Antitumor Assays
6.
Nat Commun ; 12(1): 4089, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34215733

ABSTRACT

Pediatric high-grade glioma (pHGG) is a major contributor to cancer-related death in children. In vitro and in vivo disease models reflecting the intimate connection between developmental context and pathogenesis of pHGG are essential to advance understanding and identify therapeutic vulnerabilities. Here we report establishment of 21 patient-derived pHGG orthotopic xenograft (PDOX) models and eight matched cell lines from diverse groups of pHGG. These models recapitulate histopathology, DNA methylation signatures, mutations and gene expression patterns of the patient tumors from which they were derived, and include rare subgroups not well-represented by existing models. We deploy 16 new and existing cell lines for high-throughput screening (HTS). In vitro HTS results predict variable in vivo response to PI3K/mTOR and MEK pathway inhibitors. These unique new models and an online interactive data portal for exploration of associated detailed molecular characterization and HTS chemical sensitivity data provide a rich resource for pediatric brain tumor research.


Subject(s)
Genetic Heterogeneity/drug effects , Glioma/drug therapy , Glioma/genetics , Animals , Brain Neoplasms , Cell Line, Tumor , Cell Proliferation , Child , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Glioma/pathology , High-Throughput Screening Assays , Humans , Mice , Mutation , Protein Kinase Inhibitors/therapeutic use , TOR Serine-Threonine Kinases , Xenograft Model Antitumor Assays
7.
Neuron ; 50(3): 377-88, 2006 May 04.
Article in English | MEDLINE | ID: mdl-16675393

ABSTRACT

CNS deletion of Pten in the mouse has revealed its roles in controlling cell size and number, thus providing compelling etiology for macrocephaly and Lhermitte-Duclos disease. PTEN mutations in individuals with autism spectrum disorders (ASD) have also been reported, although a causal link between PTEN and ASD remains unclear. In the present study, we deleted Pten in limited differentiated neuronal populations in the cerebral cortex and hippocampus of mice. Resulting mutant mice showed abnormal social interaction and exaggerated responses to sensory stimuli. We observed macrocephaly and neuronal hypertrophy, including hypertrophic and ectopic dendrites and axonal tracts with increased synapses. This abnormal morphology was associated with activation of the Akt/mTor/S6k pathway and inactivation of Gsk3beta. Thus, our data suggest that abnormal activation of the PI3K/AKT pathway in specific neuronal populations can underlie macrocephaly and behavioral abnormalities reminiscent of certain features of human ASD.


Subject(s)
Behavior, Animal/physiology , Brain/abnormalities , Cell Differentiation/genetics , Nervous System Malformations/metabolism , Neurons/metabolism , PTEN Phosphohydrolase/genetics , Animals , Autistic Disorder/genetics , Autistic Disorder/metabolism , Autistic Disorder/physiopathology , Axons/metabolism , Axons/pathology , Brain/metabolism , Brain/physiopathology , Cerebral Cortex/abnormalities , Cerebral Cortex/metabolism , Cerebral Cortex/physiopathology , Dendrites/metabolism , Dendrites/pathology , Disease Models, Animal , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Hippocampus/abnormalities , Hippocampus/metabolism , Hippocampus/physiopathology , Hypertrophy/genetics , Hypertrophy/pathology , Hypertrophy/physiopathology , Mice , Mice, Knockout , Mice, Transgenic , Mutation/genetics , Nervous System Malformations/genetics , Nervous System Malformations/physiopathology , Neurons/pathology , Proto-Oncogene Proteins c-akt/metabolism , Reflex, Startle/genetics , Signal Transduction/physiology , Social Behavior
8.
J Neurosci ; 29(6): 1773-83, 2009 Feb 11.
Article in English | MEDLINE | ID: mdl-19211884

ABSTRACT

PTEN (phosphatase and tensin homolog deleted on chromosome ten) is a lipid phosphatase that counteracts the function of phosphatidylinositol-3 kinase (PI3K). Loss of function of PTEN results in constitutive activation of AKT and downstream effectors and correlates with many human cancers, as well as various brain disorders, including macrocephaly, seizures, Lhermitte-Duclos disease, and autism. We previously generated a conditional Pten knock-out mouse line with Pten loss in limited postmitotic neurons in the cortex and hippocampus. Pten-null neurons developed neuronal hypertrophy and loss of neuronal polarity. The mutant mice exhibited macrocephaly and behavioral abnormalities reminiscent of certain features of human autism. Here, we report that rapamycin, a specific inhibitor of mammalian target of rapamycin complex 1 (mTORC1), can prevent and reverse neuronal hypertrophy, resulting in the amelioration of a subset of PTEN-associated abnormal behaviors, providing evidence that the mTORC1 pathway downstream of PTEN is critical for this complex phenotype.


Subject(s)
Autistic Disorder/metabolism , Neurons/metabolism , PTEN Phosphohydrolase/deficiency , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Animals , Autistic Disorder/pathology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/drug effects , Neurons/pathology , PTEN Phosphohydrolase/metabolism , Sirolimus/pharmacology
9.
Adipocyte ; 9(1): 576-586, 2020 12.
Article in English | MEDLINE | ID: mdl-32954935

ABSTRACT

Regular exercise is the first line of therapy for treating obesity-mediated metabolic disorders, including insulin resistance. It has been reported that developmental endothelial locus-1 (DEL-1) enhances macrophage efferocytosis, resulting in inflammation clearance as well as improves insulin resistance in skeletal muscle. However, the relationship between exercise and DEL-1, and the effects of DEL-1 on insulin signalling in adipocytes have not been fully elucidated to date. Protein expression levels were determined by Western blot analysis. Cells were transfected with small interfering (si) RNA to suppress gene expression. Lipid accumulation levels were detected using Oil red-O staining. Proinflammatory cytokine secretion levels were measured using ELISA. DEL-1 expression levels were induced in the skeletal muscle of people who exercised using microarray analysis. Recombinant DEL-1 augmented AMP-activated protein kinase (AMPK) phosphorylation and haem oxygenase (HO)-1 expression to alleviating inflammation and impairment of insulin signalling in 3T3-L1 adipocytes treated with palmitate. siRNA of AMPK or HO-1 also mitigated the effects of DEL-1 on inflammation and insulin resistance. DEL-1 ameliorates inflammation and insulin resistance in differentiated 3T3-L1 cells via AMPK/HO-1 signalling, suggesting that DEL-1 may be the exercise-mediated therapeutic target for treating insulin resistance and type 2 diabetes.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Adipocytes/metabolism , Calcium-Binding Proteins/genetics , Cell Adhesion Molecules/genetics , Heme Oxygenase-1/metabolism , Insulin Resistance/genetics , Lipid Metabolism , Signal Transduction , 3T3-L1 Cells , Animals , Calcium-Binding Proteins/metabolism , Cell Adhesion Molecules/metabolism , Exercise , Gene Silencing , Humans , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Insulin/metabolism , Mice , Muscle, Skeletal/metabolism
10.
Genesis ; 47(2): 122-31, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19117051

ABSTRACT

To establish a genetic tool for manipulating the neural stem/progenitor cell (NSC) lineage in a temporally controlled manner, we generated a transgenic mouse line carrying an NSC-specific nestin promoter/enhancer expressing a fusion protein encoding Cre recombinase coupled to modified estrogen receptor ligand-binding domain (ER(T2)). In the background of the Cre reporter mouse strain Rosa26(lacZ), we show that the fusion CreER(T2) recombinase is normally silent but can be activated by the estrogen analog tamoxifen both in utero, in infancy, and in adulthood. As assayed by beta-galactosidase activity in embryonic stages, tamoxifen activates Cre recombinase exclusively in neurogenic cells and their progeny. This property persists in adult mice, but Cre activity can also be detected in granule neurons and Bergmann glia at the anterior of the cerebellum, in piriform cortex, optic nerve, and some peripheral ganglia. No obvious Cre activity was observed outside of the nervous system. Thus, the nestin regulated inducible Cre mouse line provides a powerful tool for studying the physiology and lineage of NSCs.


Subject(s)
Adult Stem Cells/cytology , Adult Stem Cells/metabolism , Neurons/cytology , Neurons/metabolism , Adult Stem Cells/drug effects , Animals , Animals, Newborn , Embryonic Stem Cells/cytology , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Enhancer Elements, Genetic , Enzyme Induction/drug effects , Female , Integrases/genetics , Integrases/metabolism , Intermediate Filament Proteins/genetics , Mice , Mice, Transgenic , Nerve Tissue Proteins/genetics , Nervous System/cytology , Nervous System/drug effects , Nervous System/metabolism , Nestin , Neurogenesis/drug effects , Neurogenesis/genetics , Neurons/drug effects , Pregnancy , Promoter Regions, Genetic , Receptors, Estrogen/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombination, Genetic/drug effects , Tamoxifen/pharmacology
11.
J Neurosci ; 28(7): 1580-7, 2008 Feb 13.
Article in English | MEDLINE | ID: mdl-18272679

ABSTRACT

The rodent barrel cortex is a useful system to study the role of genes and neuronal activity in the patterning of the nervous system. Several genes encoding either intracellular signaling molecules or neurotransmitter receptors are required for barrel formation. Neurofibromin is a tumor suppressor protein that has Ras GTPase activity, thus attenuating the MAPK (mitogen-activated protein kinase) and and PI-3 kinase (phosphatidylinositol 3-kinase) pathways, and is mutated in humans with the condition neurofibromatosis type 1 (NF1). Neurofibromin is widely expressed in the developing and adult nervous system, and a common feature of NF1 is deficits in intellectual development. In addition, NF1 is an uncommonly high disorder among individuals with autism. Thus, NF1 may have important roles in normal CNS development and function. To explore roles for neurofibromin in the development of the CNS, we took advantage of a mouse conditional allele. We show that mice that lack neurofibromin in the majority of cortical neurons and astrocytes fail to form cortical barrels in the somatosensory cortex, whereas segregation of thalamic axons within the somatosensory cortex appears unaffected.


Subject(s)
Astrocytes/metabolism , Neurofibromin 1/metabolism , Neurons/metabolism , Somatosensory Cortex/cytology , Somatosensory Cortex/metabolism , Animals , Axons/physiology , Brain Mapping , Cell Line , Genes, Neurofibromatosis 1/physiology , Mice , Somatosensory Cortex/growth & development , Thalamus/growth & development
12.
J Neurosci ; 28(27): 7006-12, 2008 Jul 02.
Article in English | MEDLINE | ID: mdl-18596174

ABSTRACT

Synapse formation requires contact between dendrites and axons. Although this process is often viewed as axon mediated, dendritic filopodia may be actively involved in mediating synaptogenic contact. Although the signaling cues underlying dendritic filopodial motility are mostly unknown, brain-derived neurotrophic factor (BDNF) increases the density of dendritic filopodia and conditional deletion of tyrosine receptor kinase B (TrkB) reduces synapse number in vivo. Here, we report that TrkB associates with dendritic growth cones and filopodia, mediates filopodial motility, and does so via the phosphoinositide 3 kinase (PI3K) pathway. We used genetic and pharmacological manipulations of mouse hippocampal neurons to assess signaling downstream of TrkB. Conditional knock-out of two downstream negative regulators of TrkB signaling, Pten (phosphatase with tensin homolog) and Nf1 (neurofibromatosis type 1), enhanced filopodial motility. This effect was PI3K-dependent and correlated with synaptic density. Phosphatidylinositol 3,4,5-trisphosphate (PIP3) was preferentially localized in filopodia and this distribution was enhanced by BDNF application. Thus, intracellular control of filopodial dynamics converged on PI3K activation and PIP3 accumulation, a cellular paradigm conserved for chemotaxis in other cell types. Our results suggest that filopodial movement is not random, but responsive to synaptic guidance molecules.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Dendrites/metabolism , Hippocampus/growth & development , Hippocampus/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Pseudopodia/metabolism , Animals , Animals, Newborn , Brain-Derived Neurotrophic Factor/pharmacology , Cell Movement/drug effects , Cell Movement/physiology , Cells, Cultured , Dendrites/drug effects , Dendrites/ultrastructure , Growth Cones/drug effects , Growth Cones/metabolism , Growth Cones/ultrastructure , Hippocampus/cytology , Mice , Mice, Knockout , Neurofibromin 1/genetics , Organ Culture Techniques , PTEN Phosphohydrolase/genetics , Phosphatidylinositol Phosphates/metabolism , Pseudopodia/drug effects , Pseudopodia/ultrastructure , Rats , Rats, Sprague-Dawley , Receptor, trkB/drug effects , Receptor, trkB/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Synapses/drug effects , Synapses/metabolism , Synapses/ultrastructure
13.
Cancer Cell ; 35(1): 140-155.e7, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30595505

ABSTRACT

Diffuse intrinsic pontine gliomas (DIPGs) are incurable childhood brainstem tumors with frequent histone H3 K27M mutations and recurrent alterations in PDGFRA and TP53. We generated genetically engineered inducible mice and showed that H3.3 K27M enhanced neural stem cell self-renewal while preserving regional identity. Neonatal induction of H3.3 K27M cooperated with activating platelet-derived growth factor receptor α (PDGFRα) mutant and Trp53 loss to accelerate development of diffuse brainstem gliomas that recapitulated human DIPG gene expression signatures and showed global changes in H3K27 posttranslational modifications, but relatively restricted gene expression changes. Genes upregulated in H3.3 K27M tumors were enriched for those associated with neural development where H3K27me3 loss released the poised state of apparently bivalent promoters, whereas downregulated genes were enriched for those encoding homeodomain transcription factors.


Subject(s)
Brain Stem Neoplasms/genetics , Gene Expression Profiling/methods , Glioma/genetics , Histones/genetics , Receptor, Platelet-Derived Growth Factor alpha/genetics , Tumor Suppressor Protein p53/genetics , Animals , Cell Self Renewal , Cells, Cultured , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Histones/metabolism , Humans , Mice , Mutation , Neural Stem Cells/cytology , Rhombencephalon/pathology , Sequence Analysis, RNA/methods
14.
Brain Res ; 1168: 112-23, 2007 Sep 07.
Article in English | MEDLINE | ID: mdl-17706614

ABSTRACT

Conditional deletion of Pten (phosphatase and tensin homolog on chromosome ten) in differentiated cortical and hippocampal neurons in the mouse results in seizures, macrocephaly, social interaction deficits and anxiety, reminiscent of human autism spectrum disorder. Here we extended our previous examination of these mice using electroencephalogram/electromyogram (EEG/EMG) monitoring and found age-related increases in spontaneous seizures, which were correlated with cellular dispersion in the hippocampal dentate gyrus. Increased spontaneous locomotor activity in the open field on the first and the second day of a 3-day continuous study suggested heightened anxiety in Pten mutant mice. In contrast, the mutants exhibited decreased wheel running activity, which may reflect reduced adaptability to a novel environment. Synchronization to the light-dark cycle was normal, but for up to 28 days under constant darkness, the Pten mutants maintained a significantly lengthened and remarkably constant free-running period of almost exactly 24 h. This result implies the involvement of Pten in the maintenance of circadian rhythms, which we interpret as being due to an effect on the phosphatidylinositol 3-kinase (PI3K) signaling cascade.


Subject(s)
PTEN Phosphohydrolase/genetics , Periodicity , Running/physiology , Seizures/genetics , Seizures/physiopathology , Age Factors , Analysis of Variance , Animals , Behavior, Animal , Electroencephalography/methods , Electromyography/methods , Exploratory Behavior/physiology , Hippocampus/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , PTEN Phosphohydrolase/deficiency , Phenotype , Phosphopyruvate Hydratase/genetics , Seizures/pathology
15.
Cancer Res ; 64(21): 7773-9, 2004 Nov 01.
Article in English | MEDLINE | ID: mdl-15520182

ABSTRACT

Somatic mutations of PTEN are found in many types of cancers including glioblastoma, the most malignant astrocytic tumor. PTEN mutation occurs in 25 to 40% of glioblastomas but is rarely observed in low-grade glial neoplasms. To determine the role of Pten in astrocytes and glial tumor formation, we inactivated Pten by a Cre-loxP approach with a GFAP-cre transgenic mouse that induced Cre-mediated recombination in astrocytes. Pten conditional knockout mice showed a striking progressive enlargement of the entire brain. Increased nuclear and soma size was observed in both astrocytes and neurons, which contributed in part to the increase in brain size. Pten-deficient astrocytes showed accelerated proliferation in vitro and aberrant ongoing proliferation in adult brains in vivo. In contrast, neurons lacking Pten did not show alterations in proliferation. This study shows cell-type dependent effects of Pten loss in the adult brain, including increased astrocyte proliferation that may render astroglial cells susceptible to neoplastic transformation or malignant progression.


Subject(s)
Astrocytes/pathology , Protein Tyrosine Phosphatases/physiology , Tumor Suppressor Proteins/physiology , Animals , Brain/pathology , Cell Division , Cells, Cultured , Hypertrophy , Integrases/physiology , Mice , Mice, Transgenic , Neurons/pathology , PTEN Phosphohydrolase , Recombination, Genetic , Survival Rate
16.
Oncotarget ; 6(17): 14766-76, 2015 Jun 20.
Article in English | MEDLINE | ID: mdl-25885522

ABSTRACT

Systemic siRNA administration to target and treat glioblastoma, one of the most deadly cancers, requires robust and efficient delivery platform without immunogenicity. Here we report newly emerged multivalent naked RNA nanoparticle (RNP) based on pRNA 3-way-junction (3WJ) from bacteriophage phi29 to target glioblastoma cells with folate (FA) ligand and deliver siRNA for gene silencing. Systemically injected FA-pRNA-3WJ RNPs successfully targeted and delivered siRNA into brain tumor cells in mice, and efficiently reduced luciferase reporter gene expression (4-fold lower than control). The FA-pRNA-3WJ RNP also can target human patient-derived glioblastoma stem cells, thought to be responsible for tumor initiation and deadly recurrence, without accumulation in adjacent normal brain cells, nor other major internal organs. This study provides possible application of pRNA-3WJ RNP for specific delivery of therapeutics such as siRNA, microRNA and/or chemotherapeutic drugs into glioblastoma cells without inflicting collateral damage to healthy tissues.


Subject(s)
Brain Neoplasms/therapy , Drug Delivery Systems/methods , Glioblastoma/therapy , Nanoparticles/administration & dosage , RNA, Small Interfering/administration & dosage , RNAi Therapeutics/methods , Animals , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Female , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Magnetic Resonance Imaging , Mice, Nude , Microscopy, Confocal , Nanoparticles/chemistry , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics , Tumor Burden , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
17.
J Vis Exp ; (87)2014 May 02.
Article in English | MEDLINE | ID: mdl-24837630

ABSTRACT

We describe a multi-angle rotational optical imaging (MAROI) system for in vivo monitoring of physiopathological processes labeled with a fluorescent marker. Mouse models (brain tumor and arthritis) were used to evaluate the usefulness of this method. Saposin C (SapC)-dioleoylphosphatidylserine (DOPS) nanovesicles tagged with CellVue Maroon (CVM) fluorophore were administered intravenously. Animals were then placed in the rotational holder (MARS) of the in vivo imaging system. Images were acquired in 10° steps over 380°. A rectangular region of interest (ROI) was placed across the full image width at the model disease site. Within the ROI, and for every image, mean fluorescence intensity was computed after background subtraction. In the mouse models studied, the labeled nanovesicles were taken up in both the orthotopic and transgenic brain tumors, and in the arthritic sites (toes and ankles). Curve analysis of the multi angle image ROIs determined the angle with the highest signal. Thus, the optimal angle for imaging each disease site was characterized. The MAROI method applied to imaging of fluorescent compounds is a noninvasive, economical, and precise tool for in vivo quantitative analysis of the disease states in the described mouse models.


Subject(s)
Arthritis/diagnosis , Brain Neoplasms/diagnosis , Fluorescent Dyes/administration & dosage , Nanostructures/administration & dosage , Optics and Photonics/methods , Phosphatidylserines/administration & dosage , Saposins/administration & dosage , Absorption , Animals , Arthritis/metabolism , Arthritis/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Female , Fluorescent Dyes/pharmacokinetics , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Nude , Mice, Transgenic , Optical Imaging , Optics and Photonics/instrumentation , Whole Body Imaging
18.
Neuro Oncol ; 16(10): 1354-64, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24879047

ABSTRACT

BACKGROUNDS: Piperlongumine, a natural plant product, kills multiple cancer types with little effect on normal cells. Piperlongumine raises intracellular levels of reactive oxygen species (ROS), a phenomenon that may underlie the cancer-cell killing. Although these findings suggest that piperlongumine could be useful for treating cancers, the mechanism by which the drug selectively kills cancer cells remains unknown. METHODS: We treated multiple high-grade glioma (HGG) sphere cultures with piperlongumine and assessed its effects on ROS and cell-growth levels as well as changes in downstream signaling. We also examined the levels of putative piperlongumine targets and their roles in HGG cell growth. RESULTS: Piperlongumine treatment increased ROS levels and preferentially killed HGG cells with little effect in normal brain cells. Piperlongumine reportedly increases ROS levels after interactions with several redox regulators. We found that HGG cells expressed higher levels of the putative piperlongumine targets than did normal neural stem cells (NSCs). Furthermore, piperlongumine treatment in HGG cells, but not in normal NSCs, increased oxidative inactivation of peroxiredoxin 4 (PRDX4), an ROS-reducing enzyme that is overexpressed in HGGs and facilitates proper protein folding in the endoplasmic reticulum (ER). Moreover, piperlongumine exacerbated intracellular ER stress, an effect that was mimicked by suppressing PRDX4 expression. CONCLUSIONS: Our results reveal that the mechanism by which piperlongumine preferentially kills HGG cells involves PRDX4 inactivation, thereby inducing ER stress. Therefore, piperlongumine treatment could be considered as a novel therapeutic option for HGG treatment.


Subject(s)
Antineoplastic Agents/administration & dosage , Brain Neoplasms/drug therapy , Dioxolanes/administration & dosage , Endoplasmic Reticulum Stress/drug effects , Glioma/drug therapy , Peroxiredoxins/metabolism , Animals , Apoptosis/drug effects , Brain Neoplasms/metabolism , Brain Neoplasms/mortality , Databases, Factual , Glioma/metabolism , Glioma/mortality , Humans , Mice , Reactive Oxygen Species/metabolism , Survival Analysis , Tumor Cells, Cultured
19.
Oncotarget ; 5(4): 882-93, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24658464

ABSTRACT

Glioblastoma remains one of the deadliest of human cancers, with most patients succumbing to the disease within two years of diagnosis. The available data suggest that simultaneous inactivation of critical nodes within the glioblastoma molecular circuitry will be required for meaningful clinical efficacy. We conducted parallel genome-wide shRNA screens to identify such nodes and uncovered a number of G-Protein Coupled Receptor (GPCR) neurotransmitter pathways, including the Dopamine Receptor D2 (DRD2) signaling pathway. Supporting the importance of DRD2 in glioblastoma, DRD2 mRNA and protein expression were elevated in clinical glioblastoma specimens relative to matched non-neoplastic cerebrum. Treatment with independent si-/shRNAs against DRD2 or with DRD2 antagonists suppressed the growth of patient-derived glioblastoma lines both in vitro and in vivo. Importantly, glioblastoma lines derived from independent genetically engineered mouse models (GEMMs) were more sensitive to haloperidol, an FDA approved DRD2 antagonist, than the premalignant astrocyte lines by approximately an order of magnitude. The pro-proliferative effect of DRD2 was, in part, mediated through a GNAI2/Rap1/Ras/ERK signaling axis. Combined inhibition of DRD2 and Epidermal Growth Factor Receptor (EGFR) led to synergistic tumoricidal activity as well as ERK suppression in independent in vivo and in vitro glioblastoma models. Our results suggest combined EGFR and DRD2 inhibition as a promising strategy for glioblastoma treatment.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/metabolism , ErbB Receptors/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , RNA, Small Interfering/genetics , Receptors, Dopamine D2/metabolism , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Glioblastoma/pathology , Heterografts , Humans , Mice , Mice, Nude , Phosphorylation , RNA, Small Interfering/metabolism , Signal Transduction , Transfection
20.
Oncotarget ; 5(20): 9703-9, 2014 Oct 30.
Article in English | MEDLINE | ID: mdl-25210852

ABSTRACT

SapC-DOPS is a novel nanotherapeutic that has been shown to target and induce cell death in a variety of cancers, including glioblastoma (GBM). GBM is a primary brain tumor known to frequently demonstrate resistance to apoptosis-inducing therapeutics. Here we explore the mode of action for SapC-DOPS in GBM, a treatment being developed by Bexion Pharmaceuticals for clinical testing in patients. SapC-DOPS treatment was observed to induce lysosomal dysfunction of GBM cells characterized by decreased glycosylation of LAMP1 and altered proteolytic processing of cathepsin D independent of apoptosis and autophagic cell death. We observed that SapC-DOPS induced lysosomal membrane permeability (LMP) as shown by LysoTracker Red and Acridine Orange staining along with an increase of sphingosine, a known inducer of LMP. Additionally, SapC-DOPS displayed strong synergistic interactions with the apoptosis-inducing agent TMZ. Collectively our data suggest that SapC-DOPS induces lysosomal cell death in GBM cells, providing a new approach for treating tumors resistant to traditional apoptosis-inducing agents.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Brain Neoplasms/drug therapy , Dacarbazine/analogs & derivatives , Glioblastoma/drug therapy , Nanostructures/administration & dosage , Phosphatidylserines/pharmacology , Saposins/pharmacology , Animals , Antineoplastic Agents, Alkylating/administration & dosage , Antineoplastic Agents, Alkylating/pharmacology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Death/drug effects , Cell Line, Tumor , Dacarbazine/administration & dosage , Dacarbazine/pharmacology , Drug Synergism , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Lysosomes/drug effects , Mice , Mice, Nude , Random Allocation , Saposins/administration & dosage , Temozolomide , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL