Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Biochemistry ; 51(36): 7054-63, 2012 Sep 11.
Article in English | MEDLINE | ID: mdl-22913621

ABSTRACT

Heme oxygenase (HO) cleaves hemin into biliverdin, iron, and CO. For mammalian HOs, both native hemin propionates are required for substrate binding and activity. The HO from the pathogenic bacterium Neisseria meningitidis (NmHO) possesses a crystallographically undetected C-terminal fragment that by solution (1)H nuclear magnetic resonance (NMR) is found to fold and interact with the active site. One of the substrate propionates has been proposed to form a salt bridge to the C-terminus rather than to the conventional buried cationic side chain in other HOs. Moreover, the C-terminal dipeptide Arg208His209 cleaves spontaneously over ~24 h at a rate dependent on substituent size. Two-dimensional (1)H NMR of NmHO azide complexes with hemins with selectively deleted or rearranged propionates shows that all bind to NmHO with a structurally conserved active site as reflected in optical spectra and NMR nuclear Overhauser effect spectroscopy cross-peak and hyperfine shift patterns. In contrast to mammalian HOs, NmHO requires only a single propionate interacting with the buried terminus of Lys16 to exhibit full activity and tolerates the existence of a propionate at the exposed 8-position. The structure of the C-terminus is qualitatively retained upon deletion of the 7-propionate, but a dramatic change in the 7-propionate carboxylate (13)C chemical shift upon C-terminal cleavage confirms its role in the interaction with the C-terminus. The stronger hydrophobic contacts between pyrroles A and B with NmHO contribute more substantially to the substrate binding free energy than in mammalian HOs, "liberating" one propionate to stabilize the C-terminus. The functional implications of the C-terminus in product release are discussed.


Subject(s)
Heme Oxygenase (Decyclizing)/chemistry , Heme Oxygenase (Decyclizing)/metabolism , Neisseria meningitidis/enzymology , Nuclear Magnetic Resonance, Biomolecular , Propionates/metabolism , Catalytic Domain , Hemin/chemistry , Hemin/metabolism , Protein Binding
2.
Biochemistry ; 50(41): 8823-33, 2011 Oct 18.
Article in English | MEDLINE | ID: mdl-21870860

ABSTRACT

Heme oxygenase (HO), from the pathogenic bacterium N. meningitidis(NmHO), which secures host iron, shares many properties with mammalian HOs but also exhibits some key differences. The crystal structure appears more compact, and the crystal-undetected C-terminus interacts with substrate in solution. The unique nature of substrate-protein, specifically pyrrole-I/II-helix-2, peripheral interactions in NmHO are probed by 2D (1)H NMR to reveal unique structural features controlling substrate orientation. The thermodynamics of substrate orientational isomerism are mapped for substrates with individual vinyl → methyl → hydrogen substitutions and with enzyme C-terminal deletions. NmHO exhibits significantly stronger orientational preference, reflecting much stronger and selective pyrrole-I/II interactions with the protein matrix, than in mammalian HOs. Thus, replacing bulky vinyls with hydrogens results in a 180° rotation of substrate about the α,γ-meso axis in the active site. A "collapse" of the substrate pocket as substrate size decreases is reflected in movement of helix-2 toward the substrate as indicated by significant and selective increased NOESY cross-peak intensity, increase in steric Fe-CN tilt reflected in the orientation of the major magnetic axis, and decrease in steric constraints controlling the rate of aromatic ring reorientation. The active site of NmHO appears "stressed" for native protohemin, and its "collapse" upon replacing vinyls by hydrogen leads to a factor ~10(2) increase in substrate affinity. Interaction of the C-terminus with the active site destabilizes the crystallographic protohemin orientation by ~0.7 kcal/mol, which is consistent with optimizing the His207-Asp27 H-bond. Implications of the active site "stress" for product release are discussed.


Subject(s)
Heme Oxygenase (Decyclizing)/chemistry , Neisseria meningitidis/enzymology , Binding Sites , Catalytic Domain , Crystallography, X-Ray/methods , Hemin/chemistry , Hydrogen/chemistry , Magnetic Resonance Spectroscopy/methods , Models, Chemical , Models, Molecular , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Substrate Specificity , Thermodynamics
3.
Biochemistry ; 49(28): 5832-40, 2010 Jul 20.
Article in English | MEDLINE | ID: mdl-20540495

ABSTRACT

The HO from the pathogenic bacterium Neisseria meningitidis, NmHO, possesses C-terminal His207, Arg208, and His209 residues that are undetected in crystal structures. NMR found the C-terminus ordered and interacting with the active site and shown to undergo a spontaneous cleavage of the C-terminal Arg208-His209 bond that affects the product off rate. A preliminary model for the interaction based on the wild-type (WT) NmHO complexes has been presented [Liu, Y., Ma, L.-H., Satterlee, J. D., Zhang, X., Yoshida, T., and La Mar, G. N. (2006) Biochemistry 45, 3875-3886]. Two-dimensional (1)H NMR data of resting-state, azide-inhibited substrate complexes of the three C-terminal truncation mutants (Des-His209-, Des-Arg208His209-, and Des-His207Arg208His209-NmHO) confirm the previous proposed roles for His207 and Arg208 and reveal important additional salt bridges involving the His209 carboxylate and the side chains of both Lys126 and Arg208. Deletion of His209 leads to a qualitatively retained C-terminal geometry, but with increased separation between the C-terminus and active site. Moreover, replacing vinyls with methyls on the substrate leads to a decrease in the separation between the C-terminus and the active site. The expanded model for the C-terminus reveals a less stable His207-Arg208 cis peptide bond, providing a rationalization for its spontaneous cleavage. The rate of this spontaneous cleavage is shown to correlate with the proximity of the C-terminus to the active site, suggesting that the closer interaction leads to increased strain on the already weak His207-Arg208 peptide bond. The relevance of the C-terminus structure for in vitro studies, and the physiological function of product release, is discussed.


Subject(s)
Heme Oxygenase (Decyclizing)/chemistry , Heme Oxygenase (Decyclizing)/metabolism , Binding Sites , Humans , Magnetic Resonance Spectroscopy , Mutation , Neisseria meningitidis/metabolism , Nuclear Magnetic Resonance, Biomolecular/methods
4.
Biochemistry ; 48(14): 3127-37, 2009 Apr 14.
Article in English | MEDLINE | ID: mdl-19243105

ABSTRACT

The active site electronic structure of the azide complex of substrate-bound human heme oxygenase 1 (hHO) has been investigated by (1)H NMR spectroscopy to shed light on the orbital/spin ground state as an indicator of the unique distal pocket environment of the enzyme. Two-dimensional (1)H NMR assignments of the substrate and substrate-contact residue signals reveal a pattern of substrate methyl contact shifts that places the lone iron pi-spin in the d(xz) orbital, rather than the d(yz) orbital found in the cyanide complex. Comparison of iron spin relaxivity, magnetic anisotropy, and magnetic susceptibilities argues for a low-spin, (d(xy))(2)(d(yz),d(xz))(3), ground state in both azide and cyanide complexes. The switch from singly occupied d(yz) for the cyanide to d(xz) for the azide complex of hHO is shown to be consistent with the orbital hole determined by the azide pi-plane in the latter complex, which is approximately 90 degrees in-plane rotated from that of the imidazole pi-plane. The induction of the altered orbital ground state in the azide relative to the cyanide hHO complex, as well as the mean low-field bias of methyl hyperfine shifts and their paramagnetic relaxivity relative to those in globins, indicates that azide exerts a stronger ligand field in hHO than in the globins, or that the distal H-bonding to azide is weaker in hHO than in globins. The Asp140 --> Ala hHO mutant that abolishes activity retains the unusual WT azide complex spin/orbital ground state. The relevance of our findings for other HO complexes and the HO mechanism is discussed.


Subject(s)
Azides/chemistry , Heme Oxygenase (Decyclizing)/chemistry , Amino Acid Substitution , Catalytic Domain , Electrons , Humans , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Protein Binding , Quantum Theory
5.
Biochemistry ; 48(47): 11231-42, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19842713

ABSTRACT

Mammalian heme oxygenase (HO) possesses catalytically implicated distal ordered water molecules within an extended H-bond network, with one of the ordered water molecules (#1) providing a bridge between the iron-coordinated ligand and the catalytically critical Asp140, that, in turn, serves as an acceptor for the Tyr58 OH H-bond. The degree of H-bonding by the ligated water molecule and the coupling of this water molecule to the H-bond network are of current interest and are herein investigated by (1)H NMR. Two-dimensional NMR allowed sufficient assignments to provide both the H-bond strength and hyperfine shifts, the latter of which were used to quantify the magnetic anisotropy in both the ferric high-spin aquo and low-spin hydroxo complexes. The anisotropy in the aquo complex indicates that the H-bond donation to water #1 is marginally stronger than in a bacterial HO, while the anisotropy for the hydroxo complex reveals a conventional (d(xz), d(yz))(1) ground state indicative of only moderate to weak H-bond acceptance by the ligated hydroxide. Mapping out the changes of the H-bond strengths in the network during the ligated water --> hydroxide conversion by correcting for the effects of magnetic anisotropy reveals a very substantial change in H-bond strength for Tyr58 OH and lesser effects on nearby H-bonds. The effect of pH on the H-bonding network in human HO is much larger and transmitted much further from the iron than in a pathogenic bacterial HO. The implications for the HO mechanism of the H-bond of Tyr58 to Asp140 are discussed.


Subject(s)
Heme Oxygenase (Decyclizing)/metabolism , Anisotropy , Aspartic Acid/chemistry , Aspartic Acid/metabolism , Binding Sites , Crystallography, X-Ray , Heme Oxygenase (Decyclizing)/chemistry , Humans , Hydrogen Bonding , Hydrogen-Ion Concentration , Hydroxides/chemistry , Ligands , Magnetic Resonance Spectroscopy , Substrate Specificity , Tyrosine/chemistry , Tyrosine/metabolism , Water/chemistry
6.
J Inorg Biochem ; 100(1): 97-107, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16337271

ABSTRACT

Solution proton NMR has been used here to show that, as either the high-spin ferric, protohemin (PH) substrate complex at neutral pH, or the low-spin ferric, cyanide-inhibited PH substrate complex, the active site electronic and molecular structure of the 233- and 265-residue recombinant constructs of human heme oxygenase-1, hHO, are essentially indistinguishable. It is shown, moreover, that the equilibrium PH orientational isomerism about the alpha,gamma-meso axis is 1:1 in the water-ligated, resting-state complex, but changes to a 4:1 equilibrium ratio as the cyanide-inhibited complex, with the minor species in solution corresponding to the only one found in crystals. The introduction of significant PH orientational preference in the cyanide over the aquo complex is rationalized by the crystallographic observation for the same H2O and CN ligated complexes of rat heme oxygenase (rHO), where the steric tilt of the Fe-CN unit resulted in a approximately 1 A transition of PH into the hydrophobic interior, and stronger interaction of the vinyls with the HO matrix [M. Sugishima, H. Sakamoto, M. Noguchi, K. Fukugama, Biochemistry 42 (2003) 9898-9905]. 1H NMR spectra of the cyanide-inhibited PH complex are the most used, and most useful, for determining the distribution of orientational isomerism for PH in complexes of HO. Hence, it is imperative that the time-course of the spectra after sample preparation be considered in order to reach conclusions that relate isomeric seating of the heme with variable isomeric biliverdin products. The natural orientational isomerism of PH leads to spectral congestion that has prompted the use of a synthetic, twofold symmetric substrate, 2,4-dimethyldeuterohemin, DMDH. While the hyperfine shift pattern for non-ligated residues are very similar and are consistent with largely conserved molecular structure with the alternate substrates, the steric tilt of the Fe-CN vector towards the protein interior, as determined by the orientation of the major magnetic axes, is 2 degrees smaller for DMDH than PH, and is rationalized by the substrate translating even further into the hydrophobic interior in the cyanide complex when the bulky vinyl groups are replaced by methyl groups.


Subject(s)
Heme Oxygenase (Decyclizing)/chemistry , Ligands , Nuclear Magnetic Resonance, Biomolecular/methods , Peptides/chemistry , Cyanides/chemistry , Hemin/analogs & derivatives , Hemin/chemistry , Humans , Structure-Activity Relationship , Substrate Specificity , Thermodynamics
7.
Biochim Biophys Acta ; 1701(1-2): 75-87, 2004 Sep 01.
Article in English | MEDLINE | ID: mdl-15450177

ABSTRACT

The solution molecular structure and the electronic and magnetic properties of the heme pocket of the cyanomet complex of the isolated beta-chain of human adult hemoglobin, HbA, have been investigated by homonuclear 2D (1)H NMR in order to assess the extent of assignments allowed by (1)H NMR of a homo-tetrameric 65-kDa protein, to guide the future assignments of the heterotetrameric complex of HbA, and to compare the structure of the beta-chain to the crystallographically characterized complexes that contains the beta-chain. The target residues are those that exhibit significant (>|0.2| ppm) dipolar shifts, as predicted by a "preliminary" set of magnetic axes determined from a small set of easily assigned active site residues. All 104 target residues ( approximately 70% of total) were assigned by taking advantage of the temperature dependence predicted by the "preliminary" magnetic axes for the polypeptide backbone; they include all residues proposed to play a significant role in modulating the ligand affinity in the tetramer HbA. Left unassigned are the A-helix, the end of the G-helix and the beginning of the H-helix where dipolar shifts are less than |0.2| ppm. These comprehensive assignments allow the determination of a robust set of orientation and anisotropies of the paramagnetic susceptibility tensor that leads to quantitative interpretation of the dipolar shifts of the beta-chain in terms of the crystal coordinates of the beta-subunit in ligated HbA which, in turn, confirms a largely conserved molecular structure of the isolated beta-chain relative to that in the intact R-state HbA. The major magnetic axis, which is correlated with the tilt of the Fe-CN unit, is tilted approximately 10 degrees from the heme normal so that the Fe-CN unit is tilted toward the beta-meso-H in a fashion remarkably similar to the Fe-CO tilt in the beta-subunit of HbCO. It is concluded that a set of "preliminary" magnetic axes and the use of variable temperature 2D NMR spectra are crucial to effective assignments in the tetrameric cyanomet beta-chain and that this approach should be similarly effective in HbA.


Subject(s)
Methemoglobin/analogs & derivatives , Methemoglobin/chemistry , Catalytic Domain , Data Interpretation, Statistical , Humans , Hydrogen/chemistry , Kinetics , Magnetic Resonance Spectroscopy , Models, Molecular , Sequence Analysis, Protein
8.
Biochim Biophys Acta ; 1650(1-2): 59-72, 2003 Aug 21.
Article in English | MEDLINE | ID: mdl-12922170

ABSTRACT

The solution electronic and molecular structure for the heme pocket of the cyanomet complex of the isolated alpha-chain of human adult hemoglobin (HbA) has been investigated by homonuclear two-dimensional 1H NMR in order to establish an assignment protocol for the dimeric chain that will guide similar assignments in the intact, heterotetrameric HbA complex, and to compare the structures of the alpha-chain with its subunit in HbA. The target residues are those that exhibit significant (>0.2 ppm) dipolar shifts, as predicted by a "preliminary" set of magnetic axes determined from a small set of easily assigned active site residues. All 97 target residues (approximately 70% of total) were assigned by taking advantage of the temperature dependence predicted by the "preliminary" magnetic axes for the polypeptide backbone; they include all residues proposed to play a significant role in modulating the ligand affinity in the tetramer HbA. Left unassigned are the A-helix, the end of the G-helix and the beginning of the H-helix where dipolar shifts are less than 0.2 ppm. The complete assignments allow the determination of a robust set of orientation and anisotropies of the paramagnetic susceptibility tensor that leads to quantitative interpretation of the dipolar shifts of the alpha-chain in terms of the crystal coordinates of the alpha-subunit in ligated HbA which, in turn, confirms a largely conserved molecular structure of the isolated alpha-chain relative to that in the intact HbA. The major magnetic axis, which is correlated with the tilt of the Fe-CN unit, is tilted approximately 10 degrees from the heme normal so that the Fe-CN unit is tilted toward the beta-meso-H in a fashion remarkably similar to the Fe-CO tilt in HbACO. It is concluded that a set of "preliminary" magnetic axes and the use of variable temperature two-dimensional NMR spectra are crucial to effective assignments in the cyanomet alpha-chain and that this approach should be similarly effective in HbA.


Subject(s)
Hemoglobin A/chemistry , Binding Sites , Heme/chemistry , Heme/metabolism , Hemoglobin A/analogs & derivatives , Hemoglobin A/metabolism , Humans , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy
9.
J Inorg Biochem ; 121: 179-86, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23391487

ABSTRACT

Solution 2D (1)H NMR was carried out on the azide-ligated substrate complex of human heme oxygenase, hHO, to provide information on the active site molecular structure, chromophore electronic/magnetic properties, and the distal H-bond network linked to the exogenous ligand by catalytically relevant oriented water molecules. While 2D NMR exhibited very similar patterns of two-dimensional nuclear Overhauser spectroscopy cross peaks of residues with substrate and among residues as the previously characterized cyanide complex, significant, broadly distributed chemical shift differences were observed for both labile and non-labile protons. The anisotropy and orientation of the paramagnetic susceptibility tensor, χ, were determined for both the azide and cyanide complexes. The most significant difference observed is the tilt of the major magnetic axes from the heme normal, which is only half as large for the azide than cyanide ligand, with each ligand tilted toward the catalytically cleaved α-meso position. The difference in chemical shifts is quantitatively correlated with differences in dipolar shifts in the respective complexes for all but the distal helix. The necessity of considering dipolar shifts, and hence determination of the orientation/anisotropy of χ, in comparing chemical shifts involving paramagnetic complexes, is emphasized. The analysis shows that the H-bond network cannot detect significant differences in H-bond acceptor properties of cyanide versus azide ligands. Lastly, significant retardation of distal helix labile proton exchange upon replacing cyanide with azide indicates that the dynamic stability of the distal helix is increased upon decreasing the steric interaction of the ligand with the distal helix.


Subject(s)
Azides/chemistry , Cyanides/chemistry , Electrons , Heme Oxygenase (Decyclizing)/chemistry , Heme/chemistry , Protons , Anisotropy , Catalytic Domain , Humans , Hydrogen Bonding , Ligands , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Secondary , Thermodynamics , Water
10.
J Inorg Biochem ; 104(10): 1063-70, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20655112

ABSTRACT

Proton 2D NMR was used to confirm in solution a highly conserved portion of the molecular structure upon substrate loss for the heme oxygenase from the pathogenic bacterium Corynebacterium diphtheriae, HmuO. The chemical shifts for the conserved portion of the structure are assessed as references for the dipolar shifts needed to determine the orientation of the paramagnetic susceptibility tensor, chi, in paramagnetic substrate complexes of HmuO. It is shown that the chemical shifts for the structurally conserved portion of substrate-free HmuO serve as excellent references for residues with only small to moderate sized dipolar shifts in the cyanide-inhibited substrate complex of HmuO, yielding an orientation of chi that is essentially the same as conventionally obtained from large dipolar shifts based on empirical estimates of the diamagnetic reference. The implications of these diamagnetic chemical shifts for characterizing the hydrogen bonding in the physiologically relevant, resting-state, high-spin aquo complex are discussed. The pattern of labile proton exchange in the distal H-bond network of substrate-free HmuO allowed comparison of changes in dynamic stability of tertiary contacts in the substrate-free and substrate-bound HmuO and with the same complexes of human heme oxygenase.


Subject(s)
Bacterial Proteins/chemistry , Corynebacterium diphtheriae/enzymology , Heme Oxygenase (Decyclizing)/chemistry , Magnetic Resonance Spectroscopy/methods , Bacterial Proteins/metabolism , Catalysis/drug effects , Cyanides/chemistry , Cyanides/pharmacology , Enzyme Stability/drug effects , Heme/chemistry , Heme/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Humans , Hydrogen Bonding , Kinetics , Molecular Structure , Protons , Solutions , Substrate Specificity
11.
J Inorg Biochem ; 103(1): 10-9, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18976815

ABSTRACT

Heme oxygenase carries out stereospecific catabolism of protohemin to yield iron, CO and biliverdin. Instability of the physiological oxy complex has necessitated the use of model ligands, of which cyanide and azide are amenable to solution NMR characterization. Since cyanide and azide are contrasting models for bound oxygen, it is of interest to characterize differences in their molecular and/or electronic structures. We report on detailed 2D NMR comparison of the azide and cyanide substrate complexes of heme oxygenase from Neisseria meningitidis, which reveals significant and widespread differences in chemical shifts between the two complexes. To differentiate molecular from electronic structural changes between the two complexes, the anisotropy and orientation of the paramagnetic susceptibility tensor were determined for the azide complex for comparison with those for the cyanide complex. Comparison of the predicted and observed dipolar shifts reveals that shift differences are strongly dominated by differences in electronic structure and do not provide any evidence for detectable differences in molecular structure or hydrogen bonding except in the immediate vicinity of the distal ligand. The readily cleaved C-terminus interacts with the active site and saturation-transfer allows difficult heme assignments in the high-spin aquo complex.


Subject(s)
Azides/chemistry , Bacterial Proteins/chemistry , Cyanides/chemistry , Heme Oxygenase (Decyclizing)/chemistry , Hemin/chemistry , Neisseria meningitidis/enzymology , Bacterial Proteins/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Hemin/metabolism , Hydrogen Bonding , Ligands , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation
12.
Biochemistry ; 47(1): 421-30, 2008 Jan 08.
Article in English | MEDLINE | ID: mdl-18078349

ABSTRACT

The triple mutant of the solubilized, 265-residue construct of human heme oxygenase, K18E/E29K/R183E-hHO, has been shown to redirect the exclusive alpha-regioselectivity of wild-type hHO to primarily beta,delta-selectivity in the cleavage of heme (Wang, J., Evans, J. P., Ogura, H., La Mar, G. N., and Ortiz de Montellano, P. R. (2006) Biochemistry 45, 61-73). The 1H NMR hyperfine shift pattern for the substrate and axial His CbetaH's and the substrate-protein contacts of the cyanide-inhibited protohemin and 2,4-dimethyldeuterohemin complexes of the triple mutant have been analyzed in detail and compared to data for the WT complex. It is shown that protein contacts for the major solution isomers for both substrates in the mutant dictate approximately 90 degrees in-plane clockwise rotation relative to that in the WT. The conventional interpretation of the pattern of substrate methyl hyperfine shifts, however, indicates substrate rotations of only approximately 50 degrees . This paradox is resolved by demonstrating that the axial His25 imidazole ring also rotates counterclockwise with respect to the protein matrix in the mutant relative to that in the WT. The axial His25 CbetaH hyperfine shifts are shown to serve as independent probes of the imidazole plane orientation relative to the protein matrix. The analysis indicates that the pattern of heme methyl hyperfine shifts cannot be used alone to determine the in-plane orientation of the substrate as it relates to the stereospecificity of heme cleavage, without explicit consideration of the orientation of the axial His imidazole plane relative to the protein matrix.


Subject(s)
Heme Oxygenase (Decyclizing)/metabolism , Heme/chemistry , Heme/metabolism , Biliverdine/chemistry , Chromatography, High Pressure Liquid , Heme/analogs & derivatives , Heme Oxygenase (Decyclizing)/genetics , Hemin/chemistry , Humans , Magnetic Resonance Spectroscopy , Mutation , Stereoisomerism , Substrate Specificity
13.
IUBMB Life ; 59(8-9): 513-27, 2007.
Article in English | MEDLINE | ID: mdl-17701546

ABSTRACT

The principles for the application of the paramagnetic dipolar field of low-spin, cyanide-inhibited ferrihemoproteins for determining active site structure are briefly described. The ubiquitous dipolar shifts for assigned residues, together with crystal coordinates of some appropriate structural homolog, allow determination of the orientation and anisotropies of the paramagnetic dipolar tensor. The orientation of chi uniquely defines the orientation of the Fe-CN unit, which is tilted variably and sensitively monitors distal steric and H-bond interactions. The mapped dipolar field, in turn, can be used to determine the orientation of mutated residues. Case studies involving unusual genetic variants and point mutants of myoglobins, human hemoglobins, horseradish peroxidase and its substrate complex of heme oxygenase are presented as examples.


Subject(s)
Cyanides/pharmacology , Hemeproteins/chemistry , Magnetic Resonance Spectroscopy/methods , Hemeproteins/antagonists & inhibitors , Protein Conformation
14.
J Am Chem Soc ; 128(39): 12988-99, 2006 Oct 04.
Article in English | MEDLINE | ID: mdl-17002396

ABSTRACT

Solution 1H NMR spectroscopy has been used to determine the relative strengths (covalency) of the two axial His-Fe bonds in paramagnetic, S = 1/2, human met-cytoglobin. The sequence specific assignments of crucial portions of the proximal and distal helices, together with the magnitude of hyperfine shifts and paramagnetic relaxation, establish that His81 and His113, at the canonical positions E7 and F8 in the myoglobin fold, respectively, are ligated to the iron. The characterized complex (approximately 90%) in solution has protohemin oriented as in crystals, with the remaining approximately 10% exhibiting the hemin orientation rotated 180 degrees about the alpha-, gamma-meso axis. No evidence could be obtained for any five-coordinate complex (<1%) in equilibrium with the six-coordinate complexes. Extensive sequence-specific assignments on other dipolar shifted helical fragments and loops, together with available alternate crystal coordinates for the complex, allowed the robust determination of the orientation and anisotropies of the paramagnetic susceptibility tensor. The tilt of the major axis is controlled by the His-Fe-His vector, and the rhombic axes are controlled by the mean of the imidazole orientations for the two His. The anisotropy of the paramagnetic susceptibility tensor allowed the quantitative factoring of the hyperfine shifts for the two axial His to reveal an indistinguishable pattern and magnitudes of the contact shifts or pi spin densities, and hence, indistinguishable Fe-imidazole covalency for both Fe-His bonds.


Subject(s)
Globins/chemistry , Anisotropy , Cytoglobin , Globins/metabolism , Heme/chemistry , Humans , Nuclear Magnetic Resonance, Biomolecular/methods , Oxidation-Reduction , Protein Structure, Secondary
15.
Biochemistry ; 45(1): 61-73, 2006 Jan 10.
Article in English | MEDLINE | ID: mdl-16388581

ABSTRACT

Heme oxygenase regiospecifically oxidizes heme at the alpha-meso position to give biliverdin IXalpha, CO, and iron. The heme orientation within the active site, which is thought to determine the oxidation regiospecificity, is shown here for the human enzyme (hHO1) to be largely determined by interactions between the heme carboxylic acid groups and residues Arg183 and Lys18 but not Tyr134. Mutation of either Arg183 or Lys18 individually does not significantly alter the NADPH-cytochrome P450 reductase-dependent reaction regiochemistry but partially shifts the oxidation to the beta/delta-meso positions in the reaction supported by ascorbic acid. Mutation of Glu29 to a lysine, which places a positive charge where it can interact with a heme carboxyl if the heme rotates by approximately 90 degrees, causes a slight loss of regiospecificity but combined with the R183E and K18E mutations results primarily in beta/delta-meso oxidation of the heme under all conditions. NMR analysis of heme binding to the triple K18E/E29K/R183E mutant confirms rotation of the heme in the active site. Kinetic studies demonstrate that mutations of Arg183 greatly impair the rate of the P450 reductase-dependent reaction, in accord with the earlier finding that Arg183 is involved in binding of the reductase to hHO1, but have little effect on the ascorbate reaction. Mutations of Asp140 and Tyr58 that disrupt the active site hydrogen bonding network impair catalytic rates but do not influence the oxidation regiochemistry. The results indicate both that the oxidation regiochemistry is largely controlled by ionic interactions of the heme propionic acid groups with the protein and that shifts in regiospecificity involve rotation of the heme about an axis perpendicular to the heme plane.


Subject(s)
Heme Oxygenase-1/chemistry , Heme/chemistry , Arginine/chemistry , Arginine/metabolism , Binding Sites , Catalysis , Crystallography, X-Ray , Heme/metabolism , Heme Oxygenase-1/metabolism , Humans , Hydrogen Bonding , Kinetics , Lysine/chemistry , Lysine/metabolism , Magnetic Resonance Spectroscopy , Mutation , NADPH-Ferrihemoprotein Reductase/chemistry , NADPH-Ferrihemoprotein Reductase/metabolism , Oxidation-Reduction , Protein Conformation , Time Factors
16.
Biochemistry ; 45(46): 13875-88, 2006 Nov 21.
Article in English | MEDLINE | ID: mdl-17105206

ABSTRACT

Solution 1H NMR has been used to characterize the active site molecular and electronic structure of the cyanide-inhibited 2,4-dimethyldeuterohemin complex of the heme oxygenase from Neisseria meningitidis (NmHO) with respect to the mode of interaction of the C-terminus with the substrate and the spontaneous "aging" of NmHO that results in the cleavage of the C-terminal Arg208-His209 dipeptide. The structure of the portion involving residues Ala12-Phe192 is found to be essentially identical to that of the protohemin complex in either solution or crystal. However, His207 from the C-terminus is found to interact strongly with the substrate 1CH3, as opposed to the 8CH3 in the protohemin complex. The different mode of interaction of His207 with the alternate substrates is attributed to the 2-vinyl group of protohemin sterically interfering with the optimal orientation of the proximal helix Asp27 carboxylate that serves as acceptor to the strong H-bond by the peptide of His207. The 2,4-dimethyldeuterohemin HO complex "ages" in manner similary to that of protohemin, (Liu, Y., Ma, L.-H., Satterlee, J.D., Zhang, X., Yoshida, T., and La Mar, G. N., (2006) Biochemistry 45, 3875-3886) with mass spectrometry and N-terminal sequencing indicating that the Arg208-His209 dipeptide is cleaved. The 2,4-dimethyldeuterohemin complex of WT HO populates an equilibrium isomer stabilized in low phosphate concentration for which the axial His imidazole ring is rotated by approximately 20 degrees from that in the WT. The His ring reorientation is attributed to Asp24 serving as the H-bond acceptor to the His207 peptide NH, rather than to the His23 ring NdeltaH as in the crystals. The functional implications of the altered C-terminal interaction with substrate modification are discussed.


Subject(s)
Heme Oxygenase (Decyclizing)/metabolism , Hemin/metabolism , Neisseria meningitidis/enzymology , Binding Sites , Chromatography, High Pressure Liquid , Heme Oxygenase (Decyclizing)/chemistry , Hemin/chemistry , Hydrogen Bonding , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
17.
J Am Chem Soc ; 128(20): 6657-68, 2006 May 24.
Article in English | MEDLINE | ID: mdl-16704267

ABSTRACT

The substrate and active site residues of the low-spin hydroxide complex of the protohemin complex of Neisseria meningitidis heme oxygenase (NmHO) have been assigned by saturation transfer between the hydroxide and previously characterized aquo complex. The available dipolar shifts allowed the quantitation of both the orientation and anisotropy of the paramagnetic susceptibility tensor. The resulting positive sign, and reduced magnitude of the axial anisotropy relative to the cyanide complex, dictate that the orbital ground state is the conventional "d(pi)" (d(2)(xy)(d(xz), d(yz))(3)); and not the unusual "d(xy)" (d(2)(xz)d(2)(yz)d(xy)) orbital ground state reported for the hydroxide complex of the homologous heme oxygenase (HO) from Pseudomonas aeruginosa (Caignan, G.; Deshmukh, R.; Zeng, Y.; Wilks, A.; Bunce, R. A.; Rivera, M. J. Am. Chem. Soc. 2003, 125, 11842-11852) and proposed as a signature of the HO distal cavity. The conservation of slow labile proton exchange with solvent from pH 7.0 to 10.8 confirms the extraordinary dynamic stability of NmHO complexes. Comparison of the diamagnetic contribution to the labile proton chemical shifts in the aquo and hydroxide complexes reveals strongly conserved bond strengths in the distal H-bond network, with the exception of the distal His53 N(epsilon)(1)H. The iron-ligated water is linked to His53 primarily by a pair of nonligated, ordered water molecules that transmit the conversion of the ligated H-bond donor (H(2)O) to a H-bond acceptor (OH(-)), thereby increasing the H-bond donor strength of the His53 side chain.


Subject(s)
Heme Oxygenase (Decyclizing)/chemistry , Hydroxides/chemistry , Neisseria meningitidis/enzymology , Anisotropy , Heme/chemistry , Hydrogen Bonding , Hydrogen-Ion Concentration , Nuclear Magnetic Resonance, Biomolecular , Thermodynamics , Water/chemistry
18.
Biochemistry ; 45(12): 3875-86, 2006 Mar 28.
Article in English | MEDLINE | ID: mdl-16548515

ABSTRACT

Solution 1H NMR spectroscopy and mass spectrometry are utilized to characterize the irreversible "aging" of native heme oxygenase from N. meningitidis, NmHO. 2D NMR characterization of the cyanide-inhibited substrate complex shows that the C-terminal interaction between Arg208His209 and the exposed pyrrole of the protohemin substrate in the "native" NmHO complex is lost in the "aging". Mass spectrometry and N-terminal sequencing of wild type and "aged" NmHO reveal that the "aging" process involves cleavage of the Arg208His209 dipeptide. The construction of the double deletion mutant without Arg208His209 and its NMR comparison as both the resting state substrate complex and its cyanide-inhibited complex with the "aged" NmHO reveal that cleavage of the C-terminal dipeptide is the only modification during the aging. Comparison of cyanide ligand binding constants reveal a factor approximately 1.7 greater CN- affinity in the native than "aged" NmHO. The rate of protohemin degradation and its stereoselectivity are unaffected by the C-terminal truncation. However, the free alpha-biliverdin yield in the presence of desferrioxamine is significantly increased in the "aged" NmHO and its deletion mutant relative to WT, arguing for a role of the NmHO C-terminus in modulating product release. The facile cleavage of Arg208His209 in the resting state complex, with a half-life of approximately 24 h at 25 degrees C, suggests that previous characterization of NmHO may have been carried out on a mixture of native and "aged" NmHO, and may account for the "lost" C-terminal residues in the crystal structures.


Subject(s)
Heme Oxygenase (Decyclizing)/metabolism , Neisseria meningitidis/enzymology , Base Sequence , Crystallography, X-Ray , DNA Primers , Heme Oxygenase (Decyclizing)/chemistry , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Substrate Specificity
19.
J Am Chem Soc ; 128(19): 6391-9, 2006 May 17.
Article in English | MEDLINE | ID: mdl-16683803

ABSTRACT

The hydrogen bonding of ligated water in ferric, high-spin, resting-state substrate complexes of heme oxygenase from Neisseria meningitidis has been systematically perturbed by variable electron-withdrawing substituents on the hemin periphery. The pattern of 1H NMR-detected dipolar shifts due to the paramagnetic anisotropy is strongly conserved among the four complexes, with the magnitude of dipolar shifts or anisotropy increasing in the order of substituent formyl < vinyl < methyl. The magnetic anisotropy is axial and oriented by the axial Fe-His23 bond, and while individual anisotropies have uncertainties of approximately 5%, the relative values of deltachi (and the zero-field splitting constant, D proportional, variant deltachi(ax)) are defined to 1%. The unique changes in the axial field strength implied by the variable zero-field splitting are in accord with expectations for the axial water serving as a stronger H-bond donor in the order of hemin substituents formyl > vinyl > methyl. These results establish the axial anisotropy (and D) as a sensitive probe of the H-bonding properties of a ligated water in resting-state, substrate complexes of heme oxygenase. Correction of observed labile proton chemical shifts for paramagnetic influences indicates that Gln49 and His53, some approximately 10 angstroms from the iron, sense the change in the ligated water H-bonding to the three nonligated ordered water molecules that link the two side chains to the iron ligand. The present results augur well for detecting and characterizing changes in distal water H-bonding upon mutagenesis of residues in the distal network of ordered water molecules and strong H-bonds.


Subject(s)
Heme Oxygenase (Decyclizing)/metabolism , Hydrogen Bonding , Neisseria meningitidis/enzymology , Water/chemistry , Anisotropy , Magnetic Resonance Spectroscopy , Substrate Specificity
20.
J Biol Inorg Chem ; 10(3): 283-93, 2005 May.
Article in English | MEDLINE | ID: mdl-15821940

ABSTRACT

In order to identify the most readily deformable portion of the heme pocket in myoglobin, equine myoglobin was reconstituted with a meso-n-butyl substituent on centrosymmetric etiohemin-I. Solution 1H NMR data for the low-spin iron(III) cyanide complex of oxidized myoglobin that include 2D nuclear Overhauser enhancement spectroscopy contacts, paramagnetic relaxation, and dipolar shifts resulting from magnetic anisotropy show that the heme binds uniquely to the iron in a manner that arranges the methyl and ethyl substituents on a given pyrrole in a clockwise manner when viewed from the proximal side, and with the n-butyl group seated at the canonical alpha-meso position of native protohemin-IX. The butyl group is oriented sharply toward the proximal side and its protein contacts demonstrate that it is oriented largely into the "xenon hole" in myoglobin. The location of the n-butyl group on the proximal side near the vacancies places it within the region found to be most flexible in molecular dynamics simulation. A small, counterclockwise rotation of the pyrrole N-Fe-N vector of n-butyl-etiohemin-I relative to that for native protohemin, indicated by both the prosthetic group methyl contact shift pattern and the prosthetic group contacts to heme pocket residues, is proposed to allow the xenon hole to accommodate better the n-butyl group. In contrast to previous work, which showed that a bulky polar substituent on etiohemin-I preferentially seats at the canonical gamma-meso position, the nonpolar n-butyl group selects the alpha-meso position.


Subject(s)
Hemin/analogs & derivatives , Metmyoglobin/chemistry , Metmyoglobin/metabolism , Binding Sites , Heme/chemistry , Heme/metabolism , Hemin/chemistry , Hemin/metabolism , Magnetics , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Protons
SELECTION OF CITATIONS
SEARCH DETAIL