Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Cell ; 175(6): 1575-1590.e22, 2018 11 29.
Article in English | MEDLINE | ID: mdl-30415840

ABSTRACT

During aging, stromal functions are thought to be impaired, but little is known whether this stems from changes of fibroblasts. Using population- and single-cell transcriptomics, as well as long-term lineage tracing, we studied whether murine dermal fibroblasts are altered during physiological aging under different dietary regimes that affect longevity. We show that the identity of old fibroblasts becomes undefined, with the fibroblast states present in young skin no longer clearly demarcated. In addition, old fibroblasts not only reduce the expression of genes involved in the formation of the extracellular matrix, but also gain adipogenic traits, paradoxically becoming more similar to neonatal pro-adipogenic fibroblasts. These alterations are sensitive to systemic metabolic changes: long-term caloric restriction reversibly prevents them, whereas a high-fat diet potentiates them. Our results therefore highlight loss of cell identity and the acquisition of adipogenic traits as a mechanism underlying cellular aging, which is influenced by systemic metabolism.


Subject(s)
Adipogenesis , Cellular Senescence , Fibroblasts/metabolism , Skin Aging , Animals , Caloric Restriction , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Mice , Mice, Transgenic
2.
Nature ; 615(7950): 151-157, 2023 03.
Article in English | MEDLINE | ID: mdl-36509106

ABSTRACT

In the past decade, single-cell transcriptomics has helped to uncover new cell types and states and led to the construction of a cellular compendium of health and disease. Despite this progress, some difficult-to-sequence cells remain absent from tissue atlases. Eosinophils-elusive granulocytes that are implicated in a plethora of human pathologies1-5-are among these uncharted cell types. The heterogeneity of eosinophils and the gene programs that underpin their pleiotropic functions remain poorly understood. Here we provide a comprehensive single-cell transcriptomic profiling of mouse eosinophils. We identify an active and a basal population of intestinal eosinophils, which differ in their transcriptome, surface proteome and spatial localization. By means of a genome-wide CRISPR inhibition screen and functional assays, we reveal a mechanism by which interleukin-33 (IL-33) and interferon-γ (IFNγ) induce the accumulation of active eosinophils in the inflamed colon. Active eosinophils are endowed with bactericidal and T cell regulatory activity, and express the co-stimulatory molecules CD80 and PD-L1. Notably, active eosinophils are enriched in the lamina propria of a small cohort of patients with inflammatory bowel disease, and are closely associated with CD4+ T cells. Our findings provide insights into the biology of eosinophils and highlight the crucial contribution of this cell type to intestinal homeostasis, immune regulation and host defence. Furthermore, we lay a framework for the characterization of eosinophils in human gastrointestinal diseases.


Subject(s)
Colitis , Eosinophils , Immunity , Intestines , Animals , Humans , Mice , Colitis/immunology , Colitis/pathology , Eosinophils/classification , Eosinophils/cytology , Eosinophils/immunology , Eosinophils/metabolism , Inflammatory Bowel Diseases/immunology , Single-Cell Gene Expression Analysis , Transcriptome , Proteome , Interleukin-33 , Interferon-gamma , T-Lymphocytes , B7-1 Antigen/metabolism , Intestines/immunology , Intestines/pathology
3.
Mol Syst Biol ; 20(2): 98-119, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225383

ABSTRACT

Sequencing-based spatial transcriptomics (ST) methods allow unbiased capturing of RNA molecules at barcoded spots, charting the distribution and localization of cell types and transcripts across a tissue. While the coarse resolution of these techniques is considered a disadvantage, we argue that the inherent proximity of transcriptomes captured on spots can be leveraged to reconstruct cellular networks. To this end, we developed ISCHIA (Identifying Spatial Co-occurrence in Healthy and InflAmed tissues), a computational framework to analyze the spatial co-occurrence of cell types and transcript species within spots. Co-occurrence analysis is complementary to differential gene expression, as it does not depend on the abundance of a given cell type or on the transcript expression levels, but rather on their spatial association in the tissue. We applied ISCHIA to analyze co-occurrence of cell types, ligands and receptors in a Visium dataset of human ulcerative colitis patients, and validated our findings at single-cell resolution on matched hybridization-based data. We uncover inflammation-induced cellular networks involving M cell and fibroblasts, as well as ligand-receptor interactions enriched in the inflamed human colon, and their associated gene signatures. Our results highlight the hypothesis-generating power and broad applicability of co-occurrence analysis on spatial transcriptomics data.


Subject(s)
Colitis, Ulcerative , Humans , Colitis, Ulcerative/genetics , Colitis, Ulcerative/metabolism , Gene Expression Profiling/methods , Transcriptome/genetics , Inflammation/genetics
4.
Nucleic Acids Res ; 50(18): 10643-10664, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36156153

ABSTRACT

Asymmetric subcellular mRNA localization allows spatial regulation of gene expression and functional compartmentalization. In neurons, localization of specific mRNAs to neurites is essential for cellular functioning. However, it is largely unknown how transcript sorting works in a sequence-specific manner. Here, we combined subcellular transcriptomics and massively parallel reporter assays and tested ∼50 000 sequences for their ability to localize to neurites. Mapping the localization potential of >300 genes revealed two ways neurite targeting can be achieved: focused localization motifs and broadly encoded localization potential. We characterized the interplay between RNA stability and localization and identified motifs able to bias localization towards neurite or soma as well as the trans-acting factors required for their action. Based on our data, we devised machine learning models that were able to predict the localization behavior of novel reporter sequences. Testing this predictor on native mRNA sequencing data showed good agreement between predicted and observed localization potential, suggesting that the rules uncovered by our MPRA also apply to the localization of native full-length transcripts.


Subject(s)
Neurons , RNA Stability , Neurites/metabolism , Neurons/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Trans-Activators/metabolism
5.
Nucleic Acids Res ; 44(9): e83, 2016 05 19.
Article in English | MEDLINE | ID: mdl-26837572

ABSTRACT

Recent studies show that RNA-binding proteins (RBPs) and microRNAs (miRNAs) function in coordination with each other to control post-transcriptional regulation (PTR). Despite this, the majority of research to date has focused on the regulatory effect of individual RBPs or miRNAs. Here, we mapped both RBP and miRNA binding sites on human 3'UTRs and utilized this collection to better understand PTR. We show that the transcripts that lack competition for HuR binding are destabilized more after HuR depletion. We also confirm this finding for PUM1(2) by measuring genome-wide expression changes following the knockdown of PUM1(2) in HEK293 cells. Next, to find potential cooperative interactions, we identified the pairs of factors whose sites co-localize more often than expected by random chance. Upon examining these results for PUM1(2), we found that transcripts where the sites of PUM1(2) and its interacting miRNA form a stem-loop are more stabilized upon PUM1(2) depletion. Finally, using dinucleotide frequency and counts of regulatory sites as features in a regression model, we achieved an AU-ROC of 0.86 in predicting mRNA half-life in BEAS-2B cells. Altogether, our results suggest that future studies of PTR must consider the combined effects of RBPs and miRNAs, as well as their interactions.


Subject(s)
MicroRNAs/genetics , RNA Processing, Post-Transcriptional/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/metabolism , 3' Untranslated Regions/genetics , Binding Sites/genetics , Cell Line, Tumor , Chromosome Mapping , Computational Biology/methods , HEK293 Cells , Half-Life , HeLa Cells , Humans , MCF-7 Cells , Nucleic Acid Conformation , RNA Interference , RNA, Small Interfering/genetics , RNA-Binding Proteins/genetics , Transcription, Genetic/genetics
6.
Nat Commun ; 12(1): 1368, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33649334

ABSTRACT

The homeostasis of the gut epithelium relies upon continuous renewal and proliferation of crypt-resident intestinal epithelial stem cells (IESCs). Wnt/ß-catenin signaling is required for IESC maintenance, however, it remains unclear how this pathway selectively governs the identity and proliferative decisions of IESCs. Here, we took advantage of knock-in mice harboring transgenic ß-catenin alleles with mutations that specifically impair the recruitment of N- or C-terminal transcriptional co-factors. We show that C-terminally-recruited transcriptional co-factors of ß-catenin act as all-or-nothing regulators of Wnt-target gene expression. Blocking their interactions with ß-catenin rapidly induces loss of IESCs and intestinal homeostasis. Conversely, N-terminally recruited co-factors fine-tune ß-catenin's transcriptional output to ensure proper self-renewal and proliferative behaviour of IESCs. Impairment of N-terminal interactions triggers transient hyperproliferation of IESCs, eventually resulting in exhaustion of the self-renewing stem cell pool. IESC mis-differentiation, accompanied by unfolded protein response stress and immune infiltration, results in a process resembling aberrant "villisation" of intestinal crypts. Our data suggest that IESC-specific Wnt/ß-catenin output requires selective modulation of gene expression by transcriptional co-factors.


Subject(s)
Intestinal Mucosa/cytology , Stem Cells/metabolism , Transcription Factors/metabolism , Transcription, Genetic , beta Catenin/chemistry , beta Catenin/metabolism , Algorithms , Animals , Base Sequence , Cell Differentiation , Cell Proliferation , Chromatin/metabolism , Chromatin Assembly and Disassembly , Homeostasis , Hyperplasia , JNK Mitogen-Activated Protein Kinases/metabolism , Mice , Mutant Proteins/metabolism , Mutation/genetics , Organoids/metabolism , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction
7.
Sci Adv ; 6(32): eabb2745, 2020 08.
Article in English | MEDLINE | ID: mdl-32821835

ABSTRACT

Adult hematopoietic stem cells (HSCs) are rare multipotent cells in bone marrow that are responsible for generating all blood cell types. HSCs are a heterogeneous group of cells with high plasticity, in part, conferred by epigenetic mechanisms. PHF19, a subunit of the Polycomb repressive complex 2 (PRC2), is preferentially expressed in mouse hematopoietic precursors. Here, we now show that, in stark contrast to results published for other PRC2 subunits, genetic depletion of Phf19 increases HSC identity and quiescence. While proliferation of HSCs is normally triggered by forced mobilization, defects in differentiation impede long-term correct blood production, eventually leading to aberrant hematopoiesis. At molecular level, PHF19 deletion triggers a redistribution of the histone repressive mark H3K27me3, which notably accumulates at blood lineage-specific genes. Our results provide novel insights into how epigenetic mechanisms determine HSC identity, control differentiation, and are key for proper hematopoiesis.

8.
Nat Biotechnol ; 38(6): 747-755, 2020 06.
Article in English | MEDLINE | ID: mdl-32518403

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) is the leading technique for characterizing the transcriptomes of individual cells in a sample. The latest protocols are scalable to thousands of cells and are being used to compile cell atlases of tissues, organs and organisms. However, the protocols differ substantially with respect to their RNA capture efficiency, bias, scale and costs, and their relative advantages for different applications are unclear. In the present study, we generated benchmark datasets to systematically evaluate protocols in terms of their power to comprehensively describe cell types and states. We performed a multicenter study comparing 13 commonly used scRNA-seq and single-nucleus RNA-seq protocols applied to a heterogeneous reference sample resource. Comparative analysis revealed marked differences in protocol performance. The protocols differed in library complexity and their ability to detect cell-type markers, impacting their predictive value and suitability for integration into reference cell atlases. These results provide guidance both for individual researchers and for consortium projects such as the Human Cell Atlas.


Subject(s)
Sequence Analysis, RNA , Single-Cell Analysis , Animals , Benchmarking , Cell Line , Databases, Genetic , Genomics/methods , Genomics/standards , Humans , Mice , Sequence Analysis, RNA/methods , Sequence Analysis, RNA/standards , Single-Cell Analysis/methods , Single-Cell Analysis/standards
9.
Nat Protoc ; 13(12): 2742-2757, 2018 12.
Article in English | MEDLINE | ID: mdl-30446749

ABSTRACT

Single-cell RNA sequencing is at the forefront of high-resolution phenotyping experiments for complex samples. Although this methodology requires specialized equipment and expertise, it is now widely applied in research. However, it is challenging to create broadly applicable experimental designs because each experiment requires the user to make informed decisions about sample preparation, RNA sequencing and data analysis. To facilitate this decision-making process, in this tutorial we summarize current methodological and analytical options, and discuss their suitability for a range of research scenarios. Specifically, we provide information about best practices for the separation of individual cells and provide an overview of current single-cell capture methods at different cellular resolutions and scales. Methods for the preparation of RNA sequencing libraries vary profoundly across applications, and we discuss features important for an informed selection process. An erroneous or biased analysis can lead to misinterpretations or obscure biologically important information. We provide a guide to the major data processing steps and options for meaningful data interpretation. These guidelines will serve as a reference to support users in building a single-cell experimental framework-from sample preparation to data interpretation-that is tailored to the underlying research context.


Subject(s)
Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Transcriptome , Animals , Gene Library , Genomics/methods , Humans , Research Design , Sample Size , Specimen Handling/methods
10.
PLoS One ; 11(5): e0155354, 2016.
Article in English | MEDLINE | ID: mdl-27186987

ABSTRACT

RNA-binding proteins (RBPs) play key roles in post-transcriptional regulation of mRNAs. Dysregulations in RBP-mediated mechanisms have been found to be associated with many steps of cancer initiation and progression. Despite this, previous studies of gene expression in cancer have ignored the effect of RBPs. To this end, we developed a lasso regression model that predicts gene expression in cancer by incorporating RBP-mediated regulation as well as the effects of other well-studied factors such as copy-number variation, DNA methylation, TFs and miRNAs. As a case study, we applied our model to Lung squamous cell carcinoma (LUSC) data as we found that there are several RBPs differentially expressed in LUSC. Including RBP-mediated regulatory effects in addition to the other features significantly increased the Spearman rank correlation between predicted and measured expression of held-out genes. Using a feature selection procedure that accounts for the adaptive search employed by lasso regularization, we identified the candidate regulators in LUSC. Remarkably, several of these candidate regulators are RBPs. Furthermore, majority of the candidate regulators have been previously found to be associated with lung cancer. To investigate the mechanisms that are controlled by these regulators, we predicted their target gene sets based on our model. We validated the target gene sets by comparing against experimentally verified targets. Our results suggest that the future studies of gene expression in cancer must consider the effect of RBP-mediated regulation.


Subject(s)
Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , RNA-Binding Proteins/metabolism , Algorithms , Binding Sites , Cluster Analysis , Computational Biology/methods , Gene Expression Profiling , Humans , MicroRNAs/metabolism , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Reproducibility of Results , Transcription Factors/metabolism , Transcription Initiation Site
SELECTION OF CITATIONS
SEARCH DETAIL