Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 319
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunity ; 57(3): 401-403, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38479354

ABSTRACT

Exploring the mechanisms of microglia activation has revealed insights into the interconnections of the immune system and brain. Huang et al. demonstrate that the complex of sodium/potassium-transporting ATPase subunit alpha (NKAα1) and purinergic P2X7 receptor (P2X7R) maintains the resting state of microglial membranes. Stress increases free P2X7R that then binds to ATP to activate microglia, which may promote anxious behaviors.


Subject(s)
Neuroinflammatory Diseases , Receptors, Purinergic P2X7 , Humans , Receptors, Purinergic P2X7/metabolism , Microglia/metabolism , Brain/metabolism , Adenosine Triphosphate/metabolism
2.
Immunity ; 56(3): 620-634.e11, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36854305

ABSTRACT

Monoamine insufficiency is suggested to be associated with depressive features such as sadness, anhedonia, insomnia, and cognitive dysfunction, but the mechanisms that cause it are unclear. We found that the acute-phase protein lipopolysaccharide-binding protein (LBP) inhibits monoamine biosynthesis by acting as an endogenous inhibitor of dopamine-ß-hydroxylase (DBH) and aromatic-L-amino-acid-decarboxylase (DDC). LBP expression was increased in individuals with depression and by diverse stress challenges in mice. LBP antibodies and LBP knockdown inhibited monoamine insufficiency and depression-like features in mice, which worsened with LBP overexpression or administration. Monoamine insufficiency and depression-like symptoms were not induced by stressful stimuli in LBP-deficient mice, further highlighting a role for LBP in stress-induced depression, and a peptide we designed that blocks LBP-DBH and LBP-DDC interactions showed anti-depression effects in mice. This study reveals an important role for LBP in regulating monoamine biosynthesis and suggests that targeting LBP may have potential as a treatment for some individuals with depression.


Subject(s)
Carrier Proteins , Depression , Mice , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Acute-Phase Proteins/genetics , Acute-Phase Proteins/metabolism , Membrane Glycoproteins/metabolism , Amines
3.
Nat Immunol ; 19(4): 342-353, 2018 04.
Article in English | MEDLINE | ID: mdl-29507355

ABSTRACT

Pathogens have co-evolved with mosquitoes to optimize transmission to hosts. Mosquito salivary-gland extract is known to modulate host immune responses and facilitate pathogen transmission, but the underlying molecular mechanisms of this have remained unknown. In this study, we identified and characterized a prominent 15-kilodalton protein, LTRIN, obtained from the salivary glands of the mosquito Aedes aegypti. LTRIN expression was upregulated in blood-fed mosquitoes, and LTRIN facilitated the transmission of Zika virus (ZIKV) and exacerbated its pathogenicity by interfering with signaling through the lymphotoxin-ß receptor (LTßR). Mechanically, LTRIN bound to LTßR and 'preferentially' inhibited signaling via the transcription factor NF-κB and the production of inflammatory cytokines by interfering with the dimerization of LTßR during infection with ZIKV. Furthermore, treatment with antibody to LTRIN inhibited mosquito-mediated infection with ZIKV, and abolishing LTßR potentiated the infectivity of ZIKV both in vitro and in vivo. This study provides deeper insight into the transmission of mosquito-borne diseases in nature and supports the therapeutic potential of inhibiting the action of LTRIN to disrupt ZIKV transmission.


Subject(s)
Aedes/virology , Insect Proteins/metabolism , Saliva/metabolism , Zika Virus Infection/transmission , Zika Virus/pathogenicity , Animals , Humans , Lymphotoxin beta Receptor/immunology , Lymphotoxin beta Receptor/metabolism , Mice , Mosquito Vectors/chemistry , Mosquito Vectors/immunology , Mosquito Vectors/metabolism , Saliva/chemistry
4.
Proc Natl Acad Sci U S A ; 121(10): e2317026121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38408250

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been detected in almost all organs of coronavirus disease-19 patients, although some organs do not express angiotensin-converting enzyme-2 (ACE2), a known receptor of SARS-CoV-2, implying the presence of alternative receptors and/or co-receptors. Here, we show that the ubiquitously distributed human transferrin receptor (TfR), which binds to diferric transferrin to traffic between membrane and endosome for the iron delivery cycle, can ACE2-independently mediate SARS-CoV-2 infection. Human, not mouse TfR, interacts with Spike protein with a high affinity (KD ~2.95 nM) to mediate SARS-CoV-2 endocytosis. TfR knock-down (TfR-deficiency is lethal) and overexpression inhibit and promote SARS-CoV-2 infection, respectively. Humanized TfR expression enables SARS-CoV-2 infection in baby hamster kidney cells and C57 mice, which are known to be insusceptible to the virus infection. Soluble TfR, Tf, designed peptides blocking TfR-Spike interaction and anti-TfR antibody show significant anti-COVID-19 effects in cell and monkey models. Collectively, this report indicates that TfR is a receptor/co-receptor of SARS-CoV-2 mediating SARS-CoV-2 entry and infectivity by likely using the TfR trafficking pathway.


Subject(s)
COVID-19 , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Receptors, Transferrin/genetics , Receptors, Transferrin/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism
5.
Proc Natl Acad Sci U S A ; 119(21): e2201349119, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35594403

ABSTRACT

To cope with temperature fluctuations, molecular thermosensors in animals play a pivotal role in accurately sensing ambient temperature. Transient receptor potential melastatin 8 (TRPM8) is the most established cold sensor. In order to understand how the evolutionary forces bestowed TRPM8 with cold sensitivity, insights into both emergence of cold sensing during evolution and the thermodynamic basis of cold activation are needed. Here, we show that the trpm8 gene evolved by forming and regulating two domains (MHR1-3 and pore domains), thus determining distinct cold-sensitive properties among vertebrate TRPM8 orthologs. The young trpm8 gene without function can be observed in the closest living relatives of tetrapods (lobe-finned fishes), while the mature MHR1-3 domain with independent cold sensitivity has formed in TRPM8s of amphibians and reptiles to enable channel activation by cold. Furthermore, positive selection in the TRPM8 pore domain that tuned the efficacy of cold activation appeared late among more advanced terrestrial tetrapods. Interestingly, the mature MHR1-3 domain is necessary for the regulatory mechanism of the pore domain in TRPM8 cold activation. Our results reveal the domain-based evolution for TRPM8 functions and suggest that the acquisition of cold sensitivity in TRPM8 facilitated terrestrial adaptation during the water-to-land transition.


Subject(s)
TRPM Cation Channels , Transient Receptor Potential Channels , Cold Temperature , TRPM Cation Channels/chemistry , TRPM Cation Channels/genetics , Thermosensing/physiology
6.
Proc Natl Acad Sci U S A ; 119(47): e2208274119, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36383602

ABSTRACT

Lyme spirochetes have coevolved with ticks to optimize transmission to hosts using tick salivary molecules (TSMs) to counteract host defenses. TSMs modulate various molecular events at the tick-host interface. Lymphotoxin-beta receptor (LTßR) is a vital immune receptor and plays protective roles in host immunity against microbial infections. We found that Ltbr knockout mice were more susceptible to Lyme disease spirochetes, suggesting the involvement of LTßR signaling in tick-borne Borrelia infection. Further investigation showed that a 15-kDa TSM protein from Ixodes persulcatus (I. persulcatus salivary protein; IpSAP) functioned as an immunosuppressant to facilitate the transmission and infection of Lyme disease spirochetes. IpSAP directly interacts with LTßR to block its activation, thus inhibiting the downstream signaling and consequently suppressing immunity. IpSAP immunization provided mice with significant protection against I. persulcatus-mediated Borrelia garinii infection. Notably, the immunization showed considerable cross-protection against other Borrelia infections mediated by other ixodid ticks. One of the IpSAP homologs from other ixodid ticks showed similar effects on Lyme spirochete transmission. Together, our findings suggest that LTßR signaling plays an important role in blocking the transmission and pathogenesis of tick-borne Lyme disease spirochetes, and that IpSAP and its homologs are promising candidates for broad-spectrum vaccine development.


Subject(s)
Borrelia burgdorferi Group , Borrelia burgdorferi , Ixodes , Lyme Disease , Mice , Animals , Borrelia burgdorferi/genetics , Saliva , Ixodes/physiology , Lymphotoxin beta Receptor
7.
Proc Natl Acad Sci U S A ; 119(10): e2110647119, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35238649

ABSTRACT

SignificanceAn immunosuppressant protein (MTX), which facilitates virus infection by inhibiting leukotriene A4 hydrolase (LTA4H) to produce the lipid chemoattractant leukotriene B4 (LTB4), was identified and characterized from the submandibular salivary glands of the bat Myotis pilosus. To the best of our knowledge, this is a report of an endogenous LTA4H inhibitor in animals. MTX was highly concentrated in the bat salivary glands, suggesting a mechanism for the generation of immunological privilege and immune tolerance and providing evidence of viral shedding through oral secretions. Moreover, given that the immunosuppressant MTX selectively inhibited the proinflammatory activity of LTA4H, without affecting its antiinflammatory activity, MTX might be a potential candidate for the development of antiinflammatory drugs by targeting the LTA4-LTA4H-LTB4 inflammatory axis.


Subject(s)
Enzyme Inhibitors/metabolism , Epoxide Hydrolases , Influenza A Virus, H1N1 Subtype/metabolism , Leukotriene A4/metabolism , Orthomyxoviridae Infections/enzymology , Salivary Glands , Salivary Proteins and Peptides/metabolism , Virus Diseases , Animals , Chiroptera , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Mice , Salivary Glands/enzymology , Salivary Glands/virology
8.
Proc Natl Acad Sci U S A ; 119(46): e2212406119, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36346846

ABSTRACT

Defense against ultraviolet (UV) radiation exposure is essential for survival, especially in high-elevation species. Although some specific genes involved in UV response have been reported, the full view of UV defense mechanisms remains largely unexplored. Herein, we used integrated approaches to analyze UV responses in the highest-elevation frog, Nanorana parkeri. We show less damage and more efficient antioxidant activity in skin of this frog than those of its lower-elevation relatives after UV exposure. We also reveal genes related to UV defense and a corresponding temporal expression pattern in N. parkeri. Genomic and metabolomic analysis along with large-scale transcriptomic profiling revealed a time-dependent coordinated defense mechanism in N. parkeri. We also identified several microRNAs that play important regulatory roles, especially in decreasing the expression levels of cell cycle genes. Moreover, multiple defense genes (i.e., TYR for melanogenesis) exhibit positive selection with function-enhancing substitutions. Thus, both expression shifts and gene mutations contribute to UV adaptation in N. parkeri. Our work demonstrates a genetic framework for evolution of UV defense in a natural environment.


Subject(s)
Anura , Ultraviolet Rays , Animals , Anura/genetics , Skin , Gene Expression Profiling , Antioxidants
9.
Blood ; 140(19): 2063-2075, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36040436

ABSTRACT

Studies have shown significantly increased thromboembolic events at high altitude. We recently reported that transferrin could potentiate blood coagulation, but the underlying mechanism for high altitude-related thromboembolism is still poorly understood. Here, we examined the activity and concentration of plasma coagulation factors and transferrin in plasma collected from long-term human residents and short-stay mice exposed to varying altitudes. We found that the activities of thrombin and factor XIIa (FXIIa) along with the concentrations of transferrin were significantly increased in the plasma of humans and mice at high altitudes. Furthermore, both hypoxia (6% O2) and low temperature (0°C), 2 critical high-altitude factors, enhanced hypoxia-inducible factor 1α (HIF-1α) levels to promote the expression of the transferrin gene, whose enhancer region contains HIF-1α binding site, and consequently, to induce hypercoagulability by potentiating thrombin and FXIIa. Importantly, thromboembolic disorders and pathological insults in mouse models induced by both hypoxia and low temperature were ameliorated by transferrin interferences, including transferrin antibody treatment, transferrin downregulation, and the administration of our designed peptides that inhibit the potentiation of transferrin on thrombin and FXIIa. Thus, low temperature and hypoxia upregulated transferrin expression-promoted hypercoagulability. Our data suggest that targeting the transferrin-coagulation pathway is a novel and potentially powerful strategy against thromboembolic events caused by harmful environmental factors under high-altitude conditions.


Subject(s)
Altitude , Thrombophilia , Mice , Humans , Animals , Transferrin/genetics , Thrombin/metabolism , Temperature , Hypoxia/metabolism , Thrombophilia/etiology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
10.
Int Arch Allergy Immunol ; 185(2): 182-189, 2024.
Article in English | MEDLINE | ID: mdl-37980884

ABSTRACT

INTRODUCTION: Comorbidities, such as gastroesophageal reflux disease (GERD), are common in patients with rhinosinusitis (RS). However, the link between RS and GERD has not been fully understood. This study aimed to investigate the causal relationship between GERD and acute (ARS) or chronic RS (CRS), providing references for the pathogenesis and management of RS. METHODS: The data were obtained from the Integrative Epidemiology Unit Open GWAS project and FinnGen. A total of 972,838 individuals were included. The inverse variance-weighted (IVW) method was applied to obtain the primary results of the study. Weighted median, MR-Egger, and mode-based methods were used to determine the robustness of the results. Cochran's Q statistic and MR-Egger method were applied to detect heterogeneity and pleiotrophy in instrumental variables (IVs). Other sensitivity analyses included MR-PRESSO and leave-one-out analysis. RESULTS: The MR study showed that GERD was associated with an increased risk of CRS (OR: 1.36, 95% CI: 1.18-1.57, p < 0.001). The results of other analysis methods were broadly consistent with the IVW estimate. No heterogeneity was detected by Cochran's Q test (p = 0.061) and MR-PRESSO (p = 0.074). No horizontal pleiotropy was shown in IVs (p = 0.700). GERD was also associated with an increased risk of ARS (OR: 1.31, 95% CI: 1.17-1.48, p < 0.001). Some analytical results were inconsistent with the IVW estimate. No heterogeneity and pleiotropy were observed. There was no sufficient evidence for a reverse causal effect of RS on GERD. CONCLUSION: Our study supported that GERD promoted the risk of CRS and may be a potential risk factor for ARS. This provides additional support for further investigation into the mechanisms of GERD on RS.


Subject(s)
Gastroesophageal Reflux , Rhinosinusitis , Humans , Mendelian Randomization Analysis , Gastroesophageal Reflux/complications , Gastroesophageal Reflux/epidemiology , Risk Factors , Genome-Wide Association Study
11.
Immunity ; 43(6): 1137-47, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26680206

ABSTRACT

Atherosclerosis is a chronic inflammatory disease of arterial wall. Mitochondrial DNA (mtDNA) and human antimicrobial peptide LL-37 (Cramp in mice) are involved in atherosclerosis. Recently, mtDNA has been found to escape from autophagy and cause inflammation. Normally, mtDNA as an inflammatogenic factor cannot escape from autophagy and degradation by DNase II. In this study, we found elevated amounts of LL37-mtDNA complex in atherosclerotic plasma and plaques. The complex was resistant to DNase II degradation and escaped from autophagic recognition, leading to activation of Toll-like receptor 9 (TLR9)-mediated inflammatory responses. Mouse model studies indicated that Cramp-mtDNA complex aggravated atherosclerotic lesion formation in apolipoprotein E-deficient mice and antibody treatment against the complex alleviated the lesion. These findings suggest that the LL-37-mtDNA complex acts as a key mediator of atherosclerosis formation, and thus represents a promising therapeutic target.


Subject(s)
Atherosclerosis/metabolism , Autophagy/physiology , Cathelicidins/metabolism , DNA, Mitochondrial/metabolism , Plaque, Atherosclerotic/metabolism , Adult , Aged , Aged, 80 and over , Animals , Antimicrobial Cationic Peptides , Atherosclerosis/pathology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Plaque, Atherosclerotic/pathology
12.
Nano Lett ; 23(24): 11874-11883, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38097378

ABSTRACT

Antibiotic resistance is a global threat. Antimicrobial peptides (AMPs) are highly desirable to treat multidrug-resistant pathogen infection. However, few AMPs are clinically available, due to high cost, instability, and poor selectivity. Here, ultrashort AMPs (2-3 residues with an N-terminal cysteine) are designed and assembled as gold nanoparticles. Au-S conjugation and ultrashort size restrict nonspecific reactions and peptide orientation, thus concentrating positively charged residues on the surface. The nanostructured assemblies enormously enhance antimicrobial abilities by 1000-6000-fold and stability. One representative (Au-Cys-Arg-NH2, Au_CR) shows selective antibacterial activity against Staphylococcus aureus with 10 nM minimal inhibitory concentration. Au_CR has comparable or better in vivo antimicrobial potency than vancomycin and methicillin, with low propensity to induce resistance, little side effects, and high stability (17.5 h plasma half-life). Au_CR acts by inducing collapse of membrane potential and rupture of the bacterial membrane. The report provides insights for developing AMP-metal nanohybrids, particularly tethering nonspecific reactions and AMP orientation on the metal surface.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Gold/chemistry , Dipeptides , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Metal Nanoparticles/chemistry , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests
13.
Mol Psychiatry ; 27(11): 4790-4799, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36138130

ABSTRACT

As a prime mover in Alzheimer's disease (AD), microglial activation requires membrane translocation, integration, and activation of the metamorphic protein chloride intracellular channel 1 (CLIC1), which is primarily cytoplasmic under physiological conditions. However, the formation and activation mechanisms of functional CLIC1 are unknown. Here, we found that the human antimicrobial peptide (AMP) LL-37 promoted CLIC1 membrane translocation and integration. It also activates CLIC1 to cause microglial hyperactivation, neuroinflammation, and excitotoxicity. In mouse and monkey models, LL-37 caused significant pathological phenotypes linked to AD, including elevated amyloid-ß, increased neurofibrillary tangles, enhanced neuronal death and brain atrophy, enlargement of lateral ventricles, and impairment of synaptic plasticity and cognition, while Clic1 knockout and blockade of LL-37-CLIC1 interactions inhibited these phenotypes. Given AD's association with infection and that overloading AMP may exacerbate AD, this study suggests that LL-37, which is up-regulated upon infection, may be a driving force behind AD by acting as an endogenous agonist of CLIC1.


Subject(s)
Alzheimer Disease , Cathelicidins , Chloride Channels , Animals , Humans , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Cathelicidins/metabolism , Cathelicidins/pharmacology , Chloride Channels/metabolism , Microglia/metabolism
14.
Diabetes Obes Metab ; 25(5): 1203-1212, 2023 05.
Article in English | MEDLINE | ID: mdl-36594522

ABSTRACT

AIMS: To investigate a prebiotic fibre-enriched nutritional formula on health-related quality of life and metabolic control in type 2 diabetes. MATERIALS AND METHODS: This was a 12-week, double-blind, placebo-controlled study with an unblinded dietary advice only comparator arm. Participants were randomized 2:1:1 to a prebiotic fibre-enriched nutritional formula (Active), a placebo fibre-absent nutritional formula (Placebo), or non-blinded dietary advice alone (Diet). Primary endpoint was change in core Type 2 Diabetes Distress Assessment System (cT2-DDAS) at week 12. Glycated haemoglobin (HbA1c) change was a key secondary endpoint. RESULTS: In total, 192 participants were randomized. Mean age was 54.3 years, HbA1c 7.8%, and body mass index 35.9 kg/m2 . At week 12, cT2-DDAS reduced significantly in Active versus Placebo (-0.4, p = .03), and HbA1c was reduced significantly in Active vs Placebo (-0.64%, p = .01). Gut microbiome sequencing revealed that the relative abundance of two species of butyrate-producing bacteria (Roseburia faecis and Anaerostipes hadrus) increased significantly in Active vs. Placebo. CONCLUSIONS: A microbiome-targeting nutritional formula significantly improved cT2-DDAS and HbA1c, suggesting the potential for prebiotic fibre as a complement to lifestyle and/or pharmaceutical interventions for managing type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Humans , Middle Aged , Diabetes Mellitus, Type 2/drug therapy , Glycated Hemoglobin , Quality of Life , Prebiotics , Double-Blind Method , Hypoglycemic Agents/therapeutic use
15.
Cell Mol Life Sci ; 79(6): 309, 2022 May 21.
Article in English | MEDLINE | ID: mdl-35596804

ABSTRACT

Blood clot formation induced by dysfunctional coagulation is a frequent complication of coronavirus disease 2019 (COVID-19) and a high-risk factor for severe illness and death. Neutrophil extracellular traps (NETs) are implicated in COVID-19-induced immunothrombosis. Furthermore, human cathelicidin, a NET component, can perturb the interaction between the SARS-CoV-2 spike protein and its ACE2 receptor, which mediates viral entry into cells. At present, however, the levels of cathelicidin antimicrobial peptides after SARS-CoV-2 infection and their role in COVID-19 thrombosis formation remain unclear. In the current study, we analyzed coagulation function and found a decrease in thrombin time but an increase in fibrinogen level, prothrombin time, and activated partial thromboplastin time in COVID-19 patients. In addition, the cathelicidin antimicrobial peptide LL-37 was upregulated by the spike protein and significantly elevated in the plasma of patients. Furthermore, LL-37 levels were negatively correlated with thrombin time but positively correlated with fibrinogen level. In addition to platelet activation, cathelicidin peptides enhanced the activity of coagulation factors, such as factor Xa (FXa) and thrombin, which may induce hypercoagulation in diseases with high cathelicidin peptide levels. Injection of cathelicidin peptides promoted the formation of thrombosis, whereas deletion of cathelicidin inhibited thrombosis in vivo. These results suggest that cathelicidin antimicrobial peptide LL-37 is elevated during SARS-CoV-2 infection, which may induce hypercoagulation in COVID-19 patients by activating coagulation factors.


Subject(s)
Antimicrobial Cationic Peptides , COVID-19 , Thrombosis , Blood Coagulation Factors , COVID-19/complications , Fibrinogen , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Thrombosis/virology , Cathelicidins
16.
Cell Mol Life Sci ; 79(1): 35, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34989866

ABSTRACT

Multiple representatives of eulipotyphlan mammals such as shrews have oral venom systems. Venom facilitates shrews to hunt and/or hoard preys. However, little is known about their venom composition, and especially the mechanism to hoard prey in comatose states for meeting their extremely high metabolic rates. A toxin (BQTX) was identified from venomous submaxillary glands of the shrew Blarinella quadraticauda. BQTX is specifically distributed and highly concentrated (~ 1% total protein) in the organs. BQTX shares structural and functional similarities to toxins from snakes, wasps and snails, suggesting an evolutional relevancy of venoms from mammalians and non-mammalians. By potentiating thrombin and factor-XIIa and inhibiting plasmin, BQTX induces acute hypertension, blood coagulation and hypokinesia. It also shows strong analgesic function by inhibiting elastase. Notably, the toxin keeps high plasma stability with a 16-h half-life in-vivo, which likely extends intoxication to paralyze or immobilize prey hoarded fresh for later consumption and maximize foraging profit.


Subject(s)
Analgesia/methods , Hypokinesia/physiopathology , Shrews/metabolism , Toxins, Biological/metabolism , Venoms/metabolism , Adult , Amino Acid Sequence , Animals , Base Sequence , Blood Pressure/drug effects , Female , Hindlimb/drug effects , Hindlimb/physiopathology , Humans , Macaca mulatta , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Pain/chemically induced , Pain/physiopathology , Pain/prevention & control , Sequence Homology, Amino Acid , Shrews/genetics , Thrombin/antagonists & inhibitors , Thrombin/metabolism , Toxins, Biological/administration & dosage , Toxins, Biological/genetics , Venoms/genetics
17.
Cell Mol Life Sci ; 79(5): 240, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35416530

ABSTRACT

Ischemic stroke is a leading cause of death and disability worldwide. Increasing evidence indicates that ischemic stroke is a thromboinflammatory disease in which the contact-kinin pathway has a central role by activating pro-coagulant and pro-inflammatory processes. The blocking of distinct members of the contact-kinin pathway is a promising strategy to control ischemic stroke. Here, a plasma kallikrein and active FXII (FXIIa) inhibitor (sylvestin, contained 43 amino acids, with a molecular weight of 4790.4 Da) was first identified from forest leeches (Haemadipsa sylvestris). Testing revealed that sylvestin prolonged activated partial thromboplastin time without affecting prothrombin time. Thromboelastography and clot retraction assays further showed that it extended clotting time in whole blood and inhibited clot retraction in platelet-rich plasma. In addition, sylvestin prevented thrombosis in vivo in FeCl3-induced arterial and carrageenan-induced tail thrombosis models. The potential role of sylvestin in ischemic stroke was evaluated by transient and permanent middle cerebral artery occlusion models. Sylvestin administration profoundly protected mice from ischemic stroke by counteracting intracerebral thrombosis and inflammation. Importantly, sylvestin showed no signs of bleeding tendency. The present study identifies sylvestin is a promising contact-kinin pathway inhibitor that can proffer profound protection from ischemic stroke without increased risk of bleeding.


Subject(s)
Ischemic Stroke , Stroke , Thrombosis , Animals , Inflammation/drug therapy , Inflammation/prevention & control , Kinins , Mice , Stroke/drug therapy , Thromboinflammation , Thrombosis/drug therapy
18.
Mar Drugs ; 21(9)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37755093

ABSTRACT

Barnacles, a prevalent fouler organism in intertidal zones, has long been a source of annoyance due to significant economic losses and ecological impacts. Numerous antifouling approaches have been explored, including extensive research on antifouling chemicals. However, the excessive utilization of small-molecule chemicals appears to give rise to novel environmental concerns. Therefore, it is imperative to develop new strategies. Barnacles exhibit appropriate responses to environmental challenges with complex physiological processes and unique sensory systems. Given the assumed crucial role of bioactive peptides, an increasing number of peptides with diverse activities are being discovered in barnacles. Fouling-related processes have been identified as potential targets for antifouling strategies. In this paper, we present a comprehensive review of peptides derived from barnacles, aiming to underscore their significant potential in the quest for innovative solutions in biofouling prevention and drug discovery.


Subject(s)
Biofouling , Thoracica , Animals , Biofouling/prevention & control , Drug Discovery , Peptides/pharmacology
19.
Proc Natl Acad Sci U S A ; 117(15): 8633-8638, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32220960

ABSTRACT

To adapt to habitat temperature, vertebrates have developed sophisticated physiological and ecological mechanisms through evolution. Transient receptor potential melastatin 8 (TRPM8) serves as the primary sensor for cold. However, how cold activates TRPM8 and how this sensor is tuned for thermal adaptation remain largely unknown. Here we established a molecular framework of how cold is sensed in TRPM8 with a combination of patch-clamp recording, unnatural amino acid imaging, and structural modeling. We first observed that the maximum cold activation of TRPM8 in eight different vertebrates (i.e., African elephant and emperor penguin) with distinct side-chain hydrophobicity (SCH) in the pore domain (PD) is tuned to match their habitat temperature. We further showed that altering SCH for residues in the PD with solvent-accessibility changes leads to specific tuning of the cold response in TRPM8. We also observed that knockin mice expressing the penguin's TRPM8 exhibited remarkable tolerance to cold. Together, our findings suggest a paradigm of thermal adaptation in vertebrates, where the evolutionary tuning of the cold activation in the TRPM8 ion channel through altering SCH and solvent accessibility in its PD largely contributes to the setting of the cold-sensitive/tolerant phenotype.


Subject(s)
Adaptation, Physiological , Cold Temperature , Elephants/physiology , Ion Channel Gating , Spheniscidae/physiology , TRPM Cation Channels/metabolism , Amino Acid Sequence , Animals , Sequence Homology , TRPM Cation Channels/genetics
20.
Proc Natl Acad Sci U S A ; 117(51): 32493-32498, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33288697

ABSTRACT

Attraction to feces in wild mammalian species is extremely rare. Here we introduce the horse manure rolling (HMR) behavior of wild giant pandas (Ailuropoda melanoleuca). Pandas not only frequently sniffed and wallowed in fresh horse manure, but also actively rubbed the fecal matter all over their bodies. The frequency of HMR events was highly correlated with an ambient temperature lower than 15 °C. BCP/BCPO (beta-caryophyllene/caryophyllene oxide) in fresh horse manure was found to drive HMR behavior and attenuated the cold sensitivity of mice by directly targeting and inhibiting transient receptor potential melastatin 8 (TRPM8), an archetypical cold-activated ion channel of mammals. Therefore, horse manure containing BCP/BCPO likely bestows the wild giant pandas with cold tolerance at low ambient temperatures. Together, our study described an unusual behavior, identified BCP/BCPO as chemical inhibitors of TRPM8 ion channel, and provided a plausible chemistry-auxiliary mechanism, in which animals might actively seek and utilize potential chemical resources from their habitat for temperature acclimatization.


Subject(s)
Behavior, Animal , Manure , TRPM Cation Channels/genetics , Ursidae , Animals , Female , HEK293 Cells , Horses , Humans , Male , Manure/analysis , Mice, Inbred C57BL , Phylogeny , Polycyclic Sesquiterpenes/analysis , Polycyclic Sesquiterpenes/pharmacology , Pyrimidinones/pharmacology , Rats, Wistar , TRPM Cation Channels/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL