Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nature ; 469(7331): 559-63, 2011 Jan 27.
Article in English | MEDLINE | ID: mdl-21270896

ABSTRACT

Box C/D RNA protein complexes (RNPs) direct site-specific 2'-O-methylation of RNA and ribosome assembly. The guide RNA in C/D RNP forms base pairs with complementary substrates and selects the modification site using a molecular ruler. Despite many studies of C/D RNP structure, the fundamental questions of how C/D RNAs assemble into RNPs and how they guide modification remain unresolved. Here we report the crystal structure of an entire catalytically active archaeal C/D RNP consisting of a bipartite C/D RNA associated with two substrates and two copies each of Nop5, L7Ae and fibrillarin at 3.15-Å resolution. The substrate pairs with the second through the eleventh nucleotide of the 12-nucleotide guide, and the resultant duplex is bracketed in a channel with flexible ends. The methyltransferase fibrillarin binds to an undistorted A-form structure of the guide-substrate duplex and specifically loads the target ribose into the active site. Because interaction with the RNA duplex alone does not determine the site specificity, fibrillarin is further positioned by non-specific and specific protein interactions. Compared with the structure of the inactive C/D RNP, extensive domain movements are induced by substrate loading. Our results reveal the organization of a monomeric C/D RNP and the mechanism underlying its site-specific methylation activity.


Subject(s)
Models, Molecular , RNA, Archaeal/chemistry , RNA, Archaeal/metabolism , Ribose/chemistry , Ribose/metabolism , Sulfolobus solfataricus/chemistry , Sulfolobus solfataricus/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/metabolism , Methylation , Protein Structure, Tertiary
2.
RSC Adv ; 11(62): 39153-39168, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-35492463

ABSTRACT

The green cyanide-free gold deposition is an important development direction in electroless gold plating. However, the commonly Au(i) based cyanide-free gold plating bath always suffers from severe corrosion to the Ni-P layer and unsatisfactory service life of the bath. In this work, a green and environmentally friendly cyanide-free gold plating bath was developed with hypophosphite added as a reducing agent into the Au(iii)-DMH (5,5-dimethylhydantoin) based plating bath to retard the corrosion of the Ni-P layer. SEM micrographs combined with XRD and XPS analysis indicated that the electroless deposited gold was pure and compact. And XRD also revealed that the oriented deposition of gold was growing preferentially on Au (111). Corrosion tests, including salt spray tests, potentiodynamic polarization tests, and electrochemical impedance spectroscopy tests, indicated that the obtained Cu/Ni-P/Au coatings had significantly improved corrosion resistance performance with the loading of hypophosphite as the reducing agent. The baths remained transparent and no turbidity or precipitates were detected for 210 days, reflecting good stability. The detection for the Ni2+ concentration in the bath showed that adding hypophosphite could retard the replacement reaction between Au3+ and the Ni-P layer in part and this is important for decreasing the severe corrosion of the Ni-P layer. Moreover, Au was inactive for catalyzing the oxidation of hypophosphite during the deposition process which was confirmed furthermore via quantum chemical calculations. Therefore, our developed green cyanide-free electroless gold deposition process can beneficially provide research value and application prospects in microelectronic industry.

3.
PLoS One ; 6(9): e24790, 2011.
Article in English | MEDLINE | ID: mdl-21949752

ABSTRACT

The recently discovered CDGSH iron-sulfur domains (CISDs) are classified into seven major types with a wide distribution throughout the three domains of life. The type 1 protein mitoNEET has been shown to fold into a dimer with the signature CDGSH motif binding to a [2Fe-2S] cluster. However, the structures of all other types of CISDs were unknown. Here we report the crystal structures of type 3, 4, and 6 CISDs determined at 1.5 Å, 1.8 Å and 1.15 Å resolution, respectively. The type 3 and 4 CISD each contain one CDGSH motif and adopt a dimeric structure. Although similar to each other, the two structures have permutated topologies, and both are distinct from the type 1 structure. The type 6 CISD contains tandem CDGSH motifs and adopts a monomeric structure with an internal pseudo dyad symmetry. All currently known CISD structures share dual iron-sulfur binding modules and a ß-sandwich for either intermolecular or intramolecular dimerization. The iron-sulfur binding module, the ß-strand N-terminal to the module and a proline motif are conserved among different type structures, but the dimerization module and the interface and orientation between the two iron-sulfur binding modules are divergent. Sequence analysis further shows resemblance between CISD types 4 and 7 and between 1 and 2. Our findings suggest that all CISDs share common ancestry and diverged into three primary folds with a characteristic phylogenetic distribution: a eukaryote-specific fold adopted by types 1 and 2 proteins, a prokaryote-specific fold adopted by types 3, 4 and 7 proteins, and a tandem-motif fold adopted by types 5 and 6 proteins. Our comprehensive structural, sequential and phylogenetic analysis provides significant insight into the assembly principles and evolutionary relationship of CISDs.


Subject(s)
Evolution, Molecular , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/genetics , Amino Acid Sequence , Conserved Sequence , Crystallography, X-Ray , Magnetospirillum/metabolism , Models, Molecular , Molecular Sequence Data , Phylogeny , Protein Multimerization , Protein Structure, Tertiary , Pyrobaculum/metabolism , Ralstonia/metabolism , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL