Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters

Publication year range
1.
Thorax ; 78(6): 566-573, 2023 06.
Article in English | MEDLINE | ID: mdl-36690926

ABSTRACT

BACKGROUND: The MUC5B promoter variant (rs35705950) and telomere length are linked to pulmonary fibrosis and CT-based qualitative assessments of interstitial abnormalities, but their associations with longitudinal quantitative changes of the lung interstitium among community-dwelling adults are unknown. METHODS: We used data from participants in the Multi-Ethnic Study of Atherosclerosis with high-attenuation areas (HAAs, Examinations 1-6 (2000-2018)) and MUC5B genotype (n=4552) and telomere length (n=4488) assessments. HAA was defined as the per cent of imaged lung with attenuation of -600 to -250 Hounsfield units. We used linear mixed-effects models to examine associations of MUC5B risk allele (T) and telomere length with longitudinal changes in HAAs. Joint models were used to examine associations of longitudinal changes in HAAs with death and interstitial lung disease (ILD). RESULTS: The MUC5B risk allele (T) was associated with an absolute change in HAAs of 2.60% (95% CI 0.36% to 4.86%) per 10 years overall. This association was stronger among those with a telomere length below an age-adjusted percentile of 5% (p value for interaction=0.008). A 1% increase in HAAs per year was associated with 7% increase in mortality risk (rate ratio (RR)=1.07, 95% CI 1.02 to 1.12) for overall death and 34% increase in ILD (RR=1.34, 95% CI 1.20 to 1.50). Longer baseline telomere length was cross-sectionally associated with less HAAs from baseline scans, but not with longitudinal changes in HAAs. CONCLUSIONS: Longitudinal increases in HAAs were associated with the MUC5B risk allele and a higher risk of death and ILD.


Subject(s)
Lung Diseases, Interstitial , Lung , Adult , Humans , Lung/diagnostic imaging , Lung Diseases, Interstitial/diagnostic imaging , Lung Diseases, Interstitial/genetics , Lung Diseases, Interstitial/complications , Genotype , Telomere/genetics , Mucin-5B/genetics
2.
Thorax ; 78(11): 1067-1079, 2023 11.
Article in English | MEDLINE | ID: mdl-37268414

ABSTRACT

BACKGROUND: Treatment and preventative advances for chronic obstructive pulmonary disease (COPD) have been slow due, in part, to limited subphenotypes. We tested if unsupervised machine learning on CT images would discover CT emphysema subtypes with distinct characteristics, prognoses and genetic associations. METHODS: New CT emphysema subtypes were identified by unsupervised machine learning on only the texture and location of emphysematous regions on CT scans from 2853 participants in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS), a COPD case-control study, followed by data reduction. Subtypes were compared with symptoms and physiology among 2949 participants in the population-based Multi-Ethnic Study of Atherosclerosis (MESA) Lung Study and with prognosis among 6658 MESA participants. Associations with genome-wide single-nucleotide-polymorphisms were examined. RESULTS: The algorithm discovered six reproducible (interlearner intraclass correlation coefficient, 0.91-1.00) CT emphysema subtypes. The most common subtype in SPIROMICS, the combined bronchitis-apical subtype, was associated with chronic bronchitis, accelerated lung function decline, hospitalisations, deaths, incident airflow limitation and a gene variant near DRD1, which is implicated in mucin hypersecretion (p=1.1 ×10-8). The second, the diffuse subtype was associated with lower weight, respiratory hospitalisations and deaths, and incident airflow limitation. The third was associated with age only. The fourth and fifth visually resembled combined pulmonary fibrosis emphysema and had distinct symptoms, physiology, prognosis and genetic associations. The sixth visually resembled vanishing lung syndrome. CONCLUSION: Large-scale unsupervised machine learning on CT scans defined six reproducible, familiar CT emphysema subtypes that suggest paths to specific diagnosis and personalised therapies in COPD and pre-COPD.


Subject(s)
Emphysema , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Pulmonary Emphysema/diagnostic imaging , Pulmonary Emphysema/genetics , Case-Control Studies , Unsupervised Machine Learning , Lung , Tomography, X-Ray Computed
3.
Magn Reson Med ; 87(4): 1700-1710, 2022 04.
Article in English | MEDLINE | ID: mdl-34931715

ABSTRACT

PURPOSE: To introduce a novel convolutional neural network (CNN)-based approach for frequency-and-phase correction (FPC) of MR spectroscopy (MRS) spectra to achieve fast and accurate FPC of single-voxel MEGA-PRESS MRS data. METHODS: Two neural networks (one for frequency and one for phase) were trained and validated using published simulated and in vivo MEGA-PRESS MRS dataset with wide-range artificial frequency and phase offsets applied. The CNN-based approach was subsequently tested and compared to the current deep learning solution: multilayer perceptrons (MLP). Furthermore, random noise was added to the original simulated dataset to further investigate the model performance at varied signal-to-noise ratio (SNR) levels (i.e., 10, 5, and 2.5). Additional frequency and phase offsets (i.e., small, moderate, large) were also applied to the in vivo dataset, and the CNN model was compared to the conventional approach SR and model-based SR implementation (mSR). RESULTS: The CNN model is more robust to noise compared to the MLP-based approach due to having smaller mean absolute errors in both frequency (0.01 ± 0.01 Hz at SNR = 10 and 0.01 ± 0.02 Hz at SNR = 2.5) and phase (0.12 ± 0.09° at SNR = 10 and -0.07 ± 0.44° at SNR = 2.5) offset prediction. Furthermore, better performance was demonstrated for FPC when compared to the MLP-based approach, and SR when applied to the in vivo dataset for both with and without additional offsets. CONCLUSION: A CNN-based approach provides a solution to the automated preprocessing of MRS data, and the experimental results demonstrate the quantitatively improved spectra quality compared to the state-of-the-art approach.


Subject(s)
Image Processing, Computer-Assisted , Neural Networks, Computer , Image Processing, Computer-Assisted/methods , Magnetic Resonance Spectroscopy , Signal-To-Noise Ratio
4.
Proc Natl Acad Sci U S A ; 111(14): 5230-5, 2014 Apr 08.
Article in English | MEDLINE | ID: mdl-24706845

ABSTRACT

How do infants extract milk during breast-feeding? We have resolved a century-long scientific controversy, whether it is sucking of the milk by subatmospheric pressure or mouthing of the nipple-areola complex to induce a peristaltic-like extraction mechanism. Breast-feeding is a dynamic process, which requires coupling between periodic motions of the infant's jaws, undulation of the tongue, and the breast milk ejection reflex. The physical mechanisms executed by the infant have been intriguing topics. We used an objective and dynamic analysis of ultrasound (US) movie clips acquired during breast-feeding to explore the tongue dynamic characteristics. Then, we developed a new 3D biophysical model of the breast and lactiferous tubes that enables the mimicking of dynamic characteristics observed in US imaging during breast-feeding, and thereby, exploration of the biomechanical aspects of breast-feeding. We have shown, for the first time to our knowledge, that latch-on to draw the nipple-areola complex into the infant mouth, as well as milk extraction during breast-feeding, require development of time-varying subatmospheric pressures within the infant's oral cavity. Analysis of the US movies clearly demonstrated that tongue motility during breast-feeding was fairly periodic. The anterior tongue, which is wedged between the nipple-areola complex and the lower lips, moves as a rigid body with the cycling motion of the mandible, while the posterior section of the tongue undulates in a pattern similar to a propagating peristaltic wave, which is essential for swallowing.


Subject(s)
Breast Feeding , Milk, Human , Biomechanical Phenomena , Humans , Infant , Infant, Newborn , Mandible/physiology , Models, Theoretical , Nipples/physiology , Tongue/physiology
5.
J Acoust Soc Am ; 137(5): 2773-84, 2015 May.
Article in English | MEDLINE | ID: mdl-25994705

ABSTRACT

Ultrasound imaging is a wide spread technique used in medical imaging as well as in non-destructive testing. The technique offers many advantages such as real-time imaging, good resolution, prompt acquisition, ease of use, and low cost compared to other techniques such as x-ray imaging. However, the maximum frame rate achievable is limited as several beams must be emitted to compute a single image. For each emitted beam, one must wait for the wave to propagate back and forth, thus imposing a limit to the frame rate. Several attempts have been made to use less beams while maintaining image quality. Although efficiently increasing the frame rate, these techniques still use several transmit beams. Compressive Sensing (CS), a universal data completion scheme based on convex optimization, has been successfully applied to a number of imaging modalities over the past few years. Using a priori knowledge of the signal, it can compute an image using less data allowing for shorter acquisition times. In this paper, it is shown that a valid CS framework can be derived from ultrasound propagation theory, and that this framework can be used to compute images of scatterers using only one plane wave as a transmit beam.


Subject(s)
Algorithms , Image Interpretation, Computer-Assisted/methods , Models, Theoretical , Sound , Ultrasonics/methods , Ultrasonography/methods , Computer Simulation , Equipment Design , Linear Models , Motion , Phantoms, Imaging , Pressure , Scattering, Radiation , Time Factors , Transducers, Pressure , Ultrasonics/instrumentation , Ultrasonography/instrumentation
6.
IEEE Open J Eng Med Biol ; 5: 191-197, 2024.
Article in English | MEDLINE | ID: mdl-38606397

ABSTRACT

Goal: To predict physician fixations specifically on ophthalmology optical coherence tomography (OCT) reports from eye tracking data using CNN based saliency prediction methods in order to aid in the education of ophthalmologists and ophthalmologists-in-training. Methods: Fifteen ophthalmologists were recruited to each examine 20 randomly selected OCT reports and evaluate the likelihood of glaucoma for each report on a scale of 0-100. Eye movements were collected using a Pupil Labs Core eye-tracker. Fixation heat maps were generated using fixation data. Results: A model trained with traditional saliency mapping resulted in a correlation coefficient (CC) value of 0.208, a Normalized Scanpath Saliency (NSS) value of 0.8172, a Kullback-Leibler (KLD) value of 2.573, and a Structural Similarity Index (SSIM) of 0.169. Conclusions: The TranSalNet model was able to predict fixations within certain regions of the OCT report with reasonable accuracy, but more data is needed to improve model accuracy. Future steps include increasing data collection, improving quality of data, and modifying the model architecture.

7.
AJNR Am J Neuroradiol ; 45(5): 637-646, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38604737

ABSTRACT

BACKGROUND AND PURPOSE: Several recent works using resting-state fMRI suggest possible alterations of resting-state functional connectivity after mild traumatic brain injury. However, the literature is plagued by various analysis approaches and small study cohorts, resulting in an inconsistent array of reported findings. In this study, we aimed to investigate differences in whole-brain resting-state functional connectivity between adult patients with mild traumatic brain injury within 1 month of injury and healthy control subjects using several comprehensive resting-state functional connectivity measurement methods and analyses. MATERIALS AND METHODS: A total of 123 subjects (72 patients with mild traumatic brain injury and 51 healthy controls) were included. A standard fMRI preprocessing pipeline was used. ROI/seed-based analyses were conducted using 4 standard brain parcellation methods, and the independent component analysis method was applied to measure resting-state functional connectivity. The fractional amplitude of low-frequency fluctuations was also measured. Group comparisons were performed on all measurements with appropriate whole-brain multilevel statistical analysis and correction. RESULTS: There were no significant differences in age, sex, education, and hand preference between groups as well as no significant correlation between all measurements and these potential confounders. We found that each resting-state functional connectivity measurement revealed various regions or connections that were different between groups. However, after we corrected for multiple comparisons, the results showed no statistically significant differences between groups in terms of resting-state functional connectivity across methods and analyses. CONCLUSIONS: Although previous studies point to multiple regions and networks as possible mild traumatic brain injury biomarkers, this study shows that the effect of mild injury on brain resting-state functional connectivity has not survived after rigorous statistical correction. A further study using subject-level connectivity analyses may be necessary due to both subtle and variable effects of mild traumatic brain injury on brain functional connectivity across individuals.


Subject(s)
Magnetic Resonance Imaging , Humans , Male , Female , Adult , Magnetic Resonance Imaging/methods , Middle Aged , Brain Concussion/diagnostic imaging , Brain Concussion/physiopathology , Rest , Young Adult , Connectome/methods , Brain/diagnostic imaging , Brain/physiopathology , Brain Mapping/methods , Nerve Net/diagnostic imaging , Nerve Net/physiopathology
8.
EClinicalMedicine ; 73: 102660, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38846068

ABSTRACT

Background: The field of precision medicine endeavors to transform the healthcare industry by advancing individualised strategies for diagnosis, treatment modalities, and predictive assessments. This is achieved by utilizing extensive multidimensional biological datasets encompassing diverse components, such as an individual's genetic makeup, functional attributes, and environmental influences. Artificial intelligence (AI) systems, namely machine learning (ML) and deep learning (DL), have exhibited remarkable efficacy in predicting the potential occurrence of specific cancers and cardiovascular diseases (CVD). Methods: We conducted a comprehensive scoping review guided by the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework. Our search strategy involved combining key terms related to CVD and AI using the Boolean operator AND. In August 2023, we conducted an extensive search across reputable scholarly databases including Google Scholar, PubMed, IEEE Xplore, ScienceDirect, Web of Science, and arXiv to gather relevant academic literature on personalised medicine for CVD. Subsequently, in January 2024, we extended our search to include internet search engines such as Google and various CVD websites. These searches were further updated in March 2024. Additionally, we reviewed the reference lists of the final selected research articles to identify any additional relevant literature. Findings: A total of 2307 records were identified during the process of conducting the study, consisting of 564 entries from external sites like arXiv and 1743 records found through database searching. After 430 duplicate articles were eliminated, 1877 items that remained were screened for relevancy. In this stage, 1241 articles remained for additional review after 158 irrelevant articles and 478 articles with insufficient data were removed. 355 articles were eliminated for being inaccessible, 726 for being written in a language other than English, and 281 for not having undergone peer review. Consequently, 121 studies were deemed suitable for inclusion in the qualitative synthesis. At the intersection of CVD, AI, and precision medicine, we found important scientific findings in our scoping review. Intricate pattern extraction from large, complicated genetic datasets is a skill that AI algorithms excel at, allowing for accurate disease diagnosis and CVD risk prediction. Furthermore, these investigations have uncovered unique genetic biomarkers linked to CVD, providing insight into the workings of the disease and possible treatment avenues. The construction of more precise predictive models and personalised treatment plans based on the genetic profiles of individual patients has been made possible by the revolutionary advancement of CVD risk assessment through the integration of AI and genomics. Interpretation: The systematic methodology employed ensured the thorough examination of available literature and the inclusion of relevant studies, contributing to the robustness and reliability of the study's findings. Our analysis stresses a crucial point in terms of the adaptability and versatility of AI solutions. AI algorithms designed in non-CVD domains such as in oncology, often include ideas and tactics that might be modified to address cardiovascular problems. Funding: No funding received.

9.
ArXiv ; 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36713234

ABSTRACT

Focused ultrasound (FUS) can be used to open the blood-brain barrier (BBB), and MRI with contrast agents can detect that opening. However, repeated use of gadolinium-based contrast agents (GBCAs) presents safety concerns to patients. This study is the first to propose the idea of modeling a volume transfer constant (Ktrans) through deep learning to reduce the dosage of contrast agents. The goal of the study is not only to reconstruct artificial intelligence (AI) derived Ktrans images but to also enhance the intensity with low dosage contrast agent T1 weighted MRI scans. We successfully validated this idea through a previous state-of-the-art temporal network algorithm, which focused on extracting time domain features at the voxel level. Then we used a Spatiotemporal Network (ST-Net), composed of a spatiotemporal convolutional neural network (CNN)-based deep learning architecture with the addition of a three-dimensional CNN encoder, to improve the model performance. We tested the ST-Net model on ten datasets of FUS-induced BBB-openings aquired from different sides of the mouse brain. ST-Net successfully detected and enhanced BBB-opening signals without sacrificing spatial domain information. ST-Net was shown to be a promising method of reducing the need of contrast agents for modeling BBB-opening K-trans maps from time-series Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) scans.

10.
Ann Am Thorac Soc ; 20(5): 728-737, 2023 05.
Article in English | MEDLINE | ID: mdl-36790913

ABSTRACT

Rationale: Obstructive sleep apnea (OSA) has been hypothesized to be a risk factor in interstitial lung disease (ILD) and is associated with radiological markers that may represent the earlier stages of ILD. Prior studies have been limited by their cross-sectional design and potential confounding by body habitus. Objectives: To test the hypothesis that OSA severity is associated with more high-attenuation areas (HAAs) on computed tomography and worse lung function over time among older community-dwelling adults. Methods: We used data from participants in the MESA (Multi-Ethnic Study of Atherosclerosis) who had apnea-hypopnea index (AHI) measured from polysomnography (2010-2013), high attenuation areas (HAAs, -600 to -250 Hounsfield units, n = 784), assessments from exams 5 (2010-2012) and 6 (2016-2018) full-lung computed tomography scans, and spirometry assessments (n = 677). Linear mixed-effects models with random intercept were used to examine associations of OSA severity (i.e., AHI and hypoxic burden) with changes in HAAs, total lung volumes, and forced vital capacity (FVC) between exams 5 and 6. Potential confounders were adjusted for in the model, including age, sex, smoking history, height, and weight. Results: Among those with a higher AHI there were more men and a higher body mass index. Participants with AHI ⩾ 15 events/h and in the highest hypoxic burden quartile each had increases in HAAs of 11.30% (95% confidence interval [CI], 3.74-19.35%) and 9.85% (95% CI, 1.40-19.01%) per 10 years, respectively. There was a more rapid decline in total lung volumes imaged and FVC among those with AHI ⩾ 15 events/h of 220.2 ml (95% CI, 47.8-392.5 ml) and 3.63% (95% CI, 0.43-6.83%) per 10 years, respectively. Conclusions: A greater burden of hypoxia related to obstructive events during sleep was associated with increased lung densities over time and a more rapid decline in lung volumes regardless of body habitus. Our findings suggest OSA may be a contributing factor in the early stages of ILD.


Subject(s)
Lung Diseases, Interstitial , Sleep Apnea, Obstructive , Male , Adult , Humans , Cross-Sectional Studies , Sleep Apnea, Obstructive/complications , Lung Diseases, Interstitial/complications , Lung , Tomography, X-Ray Computed
11.
Neuroimage ; 59(3): 2110-23, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22032945

ABSTRACT

We present the first computational study investigating the electric field (E-field) strength generated by various electroconvulsive therapy (ECT) electrode configurations in specific brain regions of interest (ROIs) that have putative roles in the therapeutic action and/or adverse side effects of ECT. This study also characterizes the impact of the white matter (WM) conductivity anisotropy on the E-field distribution. A finite element head model incorporating tissue heterogeneity and WM anisotropic conductivity was constructed based on structural magnetic resonance imaging (MRI) and diffusion tensor MRI data. We computed the spatial E-field distributions generated by three standard ECT electrode placements including bilateral (BL), bifrontal (BF), and right unilateral (RUL) and an investigational electrode configuration for focal electrically administered seizure therapy (FEAST). The key results are that (1) the median E-field strength over the whole brain is 3.9, 1.5, 2.3, and 2.6 V/cm for the BL, BF, RUL, and FEAST electrode configurations, respectively, which coupled with the broad spread of the BL E-field suggests a biophysical basis for observations of superior efficacy of BL ECT compared to BF and RUL ECT; (2) in the hippocampi, BL ECT produces a median E-field of 4.8 V/cm that is 1.5-2.8 times stronger than that for the other electrode configurations, consistent with the more pronounced amnestic effects of BL ECT; and (3) neglecting the WM conductivity anisotropy results in E-field strength error up to 18% overall and up to 39% in specific ROIs, motivating the inclusion of the WM conductivity anisotropy in accurate head models. This computational study demonstrates how the realistic finite element head model incorporating tissue conductivity anisotropy provides quantitative insight into the biophysics of ECT, which may shed light on the differential clinical outcomes seen with various forms of ECT, and may guide the development of novel stimulation paradigms with improved risk/benefit ratio.


Subject(s)
Brain/anatomy & histology , Electroconvulsive Therapy/statistics & numerical data , Electromagnetic Fields , Head/anatomy & histology , Adult , Anisotropy , Diffusion Tensor Imaging , Electric Conductivity , Electrodes , Finite Element Analysis , Functional Laterality/physiology , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Models, Anatomic , Models, Statistical
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2115-2118, 2022 07.
Article in English | MEDLINE | ID: mdl-36085725

ABSTRACT

The ability to extrapolate gene expression dynamics in living single cells requires robust cell segmentation, and one of the challenges is the amorphous or irregularly shaped cell boundaries. To address this issue, we modified the U-Net architecture to segment cells in fluorescence widefield microscopy images and quantitatively evaluated its performance. We also proposed a novel loss function approach that emphasizes the segmentation accuracy on cell boundaries and encourages shape feature preservation. With a 97% sensitivity, 93% specificity, 91% Jaccard similarity, and 95% Dice coefficient, our proposed method called Residual Attention U-Net with edge-enhancement surpassed the state-of-the-art U-Net in segmentation performance as evaluated by the traditional metrics. More remarkably, the same proposed candidate also performed the best in terms of the preservation of valuable shape features, namely area, eccentricity, major axis length, solidity and orientation. These improvements on shape feature preservation can serve as useful assets for downstream cell tracking and quantification of changes in cell statistics or features over time.


Subject(s)
Benchmarking , High-Throughput Nucleotide Sequencing , Attention , Cell Shape , Disease Progression , Humans
13.
Front Hum Neurosci ; 16: 877326, 2022.
Article in English | MEDLINE | ID: mdl-35431841

ABSTRACT

Diffusion MRI (dMRI) is widely used to investigate neuronal and structural development of brain. dMRI data is often contaminated with various types of artifacts. Hence, artifact type identification in dMRI volumes is an essential pre-processing step prior to carrying out any further analysis. Manual artifact identification amongst a large pool of dMRI data is a highly labor-intensive task. Previous attempts at automating this process are often limited to a binary classification ("poor" vs. "good" quality) of the dMRI volumes or focus on detecting a single type of artifact (e.g., motion, Eddy currents, etc.). In this work, we propose a deep learning-based automated multiclass artifact classifier for dMRI volumes. Our proposed framework operates in 2 steps. In the first step, the model predicts labels associated with 3D mutually exclusive collectively exhaustive (MECE) sub-volumes or "slabs" extracted from whole dMRI volumes. In the second step, through a voting process, the model outputs the artifact class present in the whole volume under investigation. We used two different datasets for training and evaluating our model. Specifically, we utilized 2,494 poor-quality dMRI volumes from the Adolescent Brain Cognitive Development (ABCD) and 4,226 from the Healthy Brain Network (HBN) dataset. Our results demonstrate accurate multiclass volume-level main artifact type prediction with 96.61 and 97.52% average accuracies on the ABCD and HBN test sets, respectively. Finally, in order to demonstrate the effectiveness of the proposed framework in dMRI pre-processing pipelines, we conducted a proof-of-concept dMRI analysis exploring the relationship between whole-brain fractional anisotropy (FA) and participant age, to test whether the use of our model improves the brain-age association.

14.
Front Neuroimaging ; 1: 1023481, 2022.
Article in English | MEDLINE | ID: mdl-37555170

ABSTRACT

Brain tissue segmentation has demonstrated great utility in quantifying MRI data by serving as a precursor to further post-processing analysis. However, manual segmentation is highly labor-intensive, and automated approaches, including convolutional neural networks (CNNs), have struggled to generalize well due to properties inherent to MRI acquisition, leaving a great need for an effective segmentation tool. This study introduces a novel CNN-Transformer hybrid architecture designed to improve brain tissue segmentation by taking advantage of the increased performance and generality conferred by Transformers for 3D medical image segmentation tasks. We first demonstrate the superior performance of our model on various T1w MRI datasets. Then, we rigorously validate our model's generality applied across four multi-site T1w MRI datasets, covering different vendors, field strengths, scan parameters, and neuropsychiatric conditions. Finally, we highlight the reliability of our model on test-retest scans taken in different time points. In all situations, our model achieved the greatest generality and reliability compared to the benchmarks. As such, our method is inherently robust and can serve as a valuable tool for brain related T1w MRI studies. The code for the TABS network is available at: https://github.com/raovish6/TABS.

15.
Magn Reson Imaging ; 92: 140-149, 2022 10.
Article in English | MEDLINE | ID: mdl-35777684

ABSTRACT

PURPOSE: To develop an end-to-end deep learning (DL) framework to segment ventilation defects on pulmonary hyperpolarized MRI. MATERIALS AND METHODS: The Multi-Ethnic Study of Atherosclerosis Chronic Obstructive Pulmonary Disease (COPD) study is a nested longitudinal case-control study in older smokers. Between February 2016 and July 2017, 56 participants (age, mean ± SD, 74 ± 8 years; 34 men) underwent same breath-hold proton (1H) and helium (3He) MRI, which were annotated for non-ventilated, hypo-ventilated, and normal-ventilated lungs. In this retrospective DL study, 820 1H and 3He slices from 42/56 (75%) participants were randomly selected for training, with the remaining 14/56 (25%) for test. Full lung masks were segmented using a traditional U-Net on 1H MRI and were imported into a cascaded U-Net, which were used to segment ventilation defects on 3He MRI. Models were trained with conventional data augmentation (DA) and generative adversarial networks (GAN)-DA. RESULTS: Conventional-DA improved 1H and 3He MRI segmentation over the non-DA model (P = 0.007 to 0.03) but GAN-DA did not yield further improvement. The cascaded U-Net improved non-ventilated lung segmentation (P < 0.005). Dice similarity coefficients (DSC) between manually and DL-segmented full lung, non-ventilated, hypo-ventilated, and normal-ventilated regions were 0.965 ± 0.010, 0.840 ± 0.057, 0.715 ± 0.175, and 0.883 ± 0.060, respectively. We observed no statistically significant difference in DCSs between participants with and without COPD (P = 0.41, 0.06, and 0.18 for non-ventilated, hypo-ventilated, and normal-ventilated regions, respectively). CONCLUSION: The proposed cascaded U-Net framework generated fully-automated segmentation of ventilation defects on 3He MRI among older smokers with and without COPD that is consistent with our reference method.


Subject(s)
Atherosclerosis , Pulmonary Disease, Chronic Obstructive , Aged , Aged, 80 and over , Atherosclerosis/diagnostic imaging , Case-Control Studies , Helium , Humans , Lung/diagnostic imaging , Magnetic Resonance Imaging/methods , Male , Protons , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Retrospective Studies
16.
Front Aging Neurosci ; 14: 923673, 2022.
Article in English | MEDLINE | ID: mdl-36034139

ABSTRACT

While MRI contrast agents such as those based on Gadolinium are needed for high-resolution mapping of brain metabolism, these contrast agents require intravenous administration, and there are rising concerns over their safety and invasiveness. Furthermore, non-contrast MRI scans are more commonly performed than those with contrast agents and are readily available for analysis in public databases such as the Alzheimer's Disease Neuroimaging Initiative (ADNI). In this article, we hypothesize that a deep learning model, trained using quantitative steady-state contrast-enhanced structural MRI datasets, in mice and humans, can generate contrast-equivalent information from a single non-contrast MRI scan. The model was first trained, optimized, and validated in mice, and was then transferred and adapted to humans. We observe that the model can substitute for Gadolinium-based contrast agents in approximating cerebral blood volume, a quantitative representation of brain activity, at sub-millimeter granularity. Furthermore, we validate the use of our deep-learned prediction maps to identify functional abnormalities in the aging brain using locally obtained MRI scans, and in the brain of patients with Alzheimer's disease using publicly available MRI scans from ADNI. Since it is derived from a commonly-acquired MRI protocol, this framework has the potential for broad clinical utility and can also be applied retrospectively to research scans across a host of neurological/functional diseases.

17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2756-2760, 2021 11.
Article in English | MEDLINE | ID: mdl-34891820

ABSTRACT

Diffusion Tensor Imaging (DTI) is widely used to find brain biomarkers for various stages of brain structural and neuronal development. Processing DTI data requires a detailed Quality Assessment (QA) to detect artifactual volumes amongst a large pool of data. Since large cohorts of brain DTI data are often used in different studies, manual QA of such images is very labor-intensive. In this paper, a deep learning-based tool is developed for quick automatic QA of 3D raw diffusion MR images. We propose a 2-step framework to automate the process of binary (i.e., 'good' vs 'poor') quality classification of diffusion MR images. In the first step, using two separately trained 3D convolutional neural networks with different input sizes, quality labels for individual Regions of Interest (ROIs) sampled from whole DTI volumes are predicted. In the second step, two distinct novel voting systems are designed and fine-tuned to predict the quality label of whole brain DTI volumes using the individual ROI labels predicted in the previous step. Our results demonstrate the validity and practicality of our tool. Specifically, using a balanced dataset of 6,940 manually-labeled 3D DTI volumes from 85 unique subjects for training, validation, and testing, our model achieves 100% accuracy via one voting system, and 98% accuracy via another voting system on the same test set.


Subject(s)
Diffusion Tensor Imaging , Neural Networks, Computer , Brain/diagnostic imaging , Humans , Imaging, Three-Dimensional
18.
Physiol Rep ; 9(3): e14685, 2021 02.
Article in English | MEDLINE | ID: mdl-33547883

ABSTRACT

Tongue motility is an essential physiological component of human feeding from infancy through adulthood. At present, it is a challenge to distinguish among the many pathologies of swallowing due to the absence of quantitative tools. We objectively quantified tongue kinematics from ultrasound imaging during infant and adult feeding. The functional advantage of this method is presented in several subjects with swallowing difficulties. We demonstrated for the first time the differences in tongue kinematics during breast- and bottle-feeding, showing the arrhythmic sucking pattern during bottle-feeding as compared with breastfeeding in the same infant with torticollis. The method clearly displayed the improvement of tongue motility after frenotomy in infants with either tongue-tie or restrictive labial frenulum. The analysis also revealed the absence of posterior tongue peristalsis required for safe swallowing in an infant with dysphagia. We also analyzed for the first time the tongue kinematics in an adult during water bolus swallowing demonstrating tongue peristaltic-like movements in both anterior and posterior segments. First, the anterior segment undulates to close off the oral cavity and the posterior segment held the bolus, and then, the posterior tongue propelled the bolus to the pharynx. The present methodology of quantitative imaging revealed highly conserved patterns of tongue kinematics that can differentiate between swallowing pathologies and evaluate treatment interventions. The method is novel and objective and has the potential to advance knowledge about the normal swallowing and management of feeding disorders.


Subject(s)
Bottle Feeding , Breast Feeding , Deglutition , Eating , Movement , Tongue/physiology , Adult , Age Factors , Ankyloglossia/diagnostic imaging , Ankyloglossia/physiopathology , Biomechanical Phenomena , Deglutition Disorders/diagnostic imaging , Deglutition Disorders/physiopathology , Humans , Infant , Periodicity , Time Factors , Tongue/diagnostic imaging , Torticollis/diagnostic imaging , Torticollis/physiopathology , Ultrasonography , Video Recording
19.
IEEE Trans Med Imaging ; 40(12): 3652-3662, 2021 12.
Article in English | MEDLINE | ID: mdl-34224349

ABSTRACT

Pulmonary emphysema overlaps considerably with chronic obstructive pulmonary disease (COPD), and is traditionally subcategorized into three subtypes previously identified on autopsy. Unsupervised learning of emphysema subtypes on computed tomography (CT) opens the way to new definitions of emphysema subtypes and eliminates the need of thorough manual labeling. However, CT-based emphysema subtypes have been limited to texture-based patterns without considering spatial location. In this work, we introduce a standardized spatial mapping of the lung for quantitative study of lung texture location and propose a novel framework for combining spatial and texture information to discover spatially-informed lung texture patterns (sLTPs) that represent novel emphysema subtype candidates. Exploiting two cohorts of full-lung CT scans from the MESA COPD (n = 317) and EMCAP (n = 22) studies, we first show that our spatial mapping enables population-wide study of emphysema spatial location. We then evaluate the characteristics of the sLTPs discovered on MESA COPD, and show that they are reproducible, able to encode standard emphysema subtypes, and associated with physiological symptoms.


Subject(s)
Atherosclerosis , Emphysema , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Lung/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Pulmonary Emphysema/diagnostic imaging
20.
IEEE J Biomed Health Inform ; 24(4): 1180-1187, 2020 04.
Article in English | MEDLINE | ID: mdl-31380772

ABSTRACT

Neuroimaging and genetic biomarkers have been widely studied from discriminative perspectives towards Alzheimer's disease (AD) classification, since neuroanatomical patterns and genetic variants are jointly critical indicators for AD diagnosis. Generative methods, designed to model common occurring patterns, could potentially advance the understanding of this disease, but have not been fully explored for AD characterization. Moreover, the introduction of a supervised component into the generative process can constrain the model for more discriminative characterization. In this study, we propose an original method based on supervised topic modeling to characterize AD from a generative perspective, yet maintaining discriminative power at differentiating disease populations. Our topic modeling jointly exploits discretized image features and categorical genetic features. Diagnostic information - cognitively normal (CN), mild cognitive impairment (MCI) and AD - is introduced as a supervision variable. Experimental results on the ADNI cohort demonstrate that our model, while achieving competitive discriminative performance, can discover topics revealing both well-known and novel neuroanatomical patterns including temporal, parietal and frontal regions; as well as associations between genetic factors and neuroanatomical patterns.


Subject(s)
Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Diagnosis, Computer-Assisted/methods , Supervised Machine Learning , Aged , Aged, 80 and over , Algorithms , Female , Genetic Markers/genetics , Humans , Magnetic Resonance Imaging , Male , Neuroimaging
SELECTION OF CITATIONS
SEARCH DETAIL