Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Microvasc Res ; 99: 19-25, 2015 May.
Article in English | MEDLINE | ID: mdl-25708050

ABSTRACT

Particle adhesion in vivo is highly dependent on the microvascular environment comprising of unique anatomical, geometrical, physiological fluid flow conditions and cell-particle and cell-cell interactions. Hence, proper design of vascular-targeted drug carriers that efficiently deliver therapeutics to the targeted cells or tissue at effective concentrations must account for these complex conditions observed in vivo. In this study, we build upon our previous results with the goal of characterizing the effects of bifurcations and their corresponding angle on adhesion of functionalized particles and neutrophils to activated endothelium. Our hypothesis is that adhesion is significantly affected by the type of biochemical interactions between particles and vessel wall as well as the presence of bifurcations and their corresponding angle. Here, we investigate adhesion of functionalized particles (2 µm and 7 µm microparticles) to protein coated channels as well as adhesion of human neutrophils to human endothelial cells under various physiological flow conditions in microfluidic bifurcating channels comprising of different contained angles (30°, 60°, 90°, or 120°). Our findings indicate that both functionalized particle and neutrophil adhesion propensity increase with a larger bifurcation angle. Moreover, the difference in the adhesion patterns of neutrophils and rigid, similar sized (7 µm) particles is more apparent in the junction regions with a larger contained angle. By selecting the right particle size range, enhanced targeted binding of vascular drug carriers can be achieved along with a higher efficacy at optimal drug dosage. Hence, vascular drug particle design needs to be tailored to account for higher binding propensity at larger bifurcation angles.


Subject(s)
Blood Vessels/pathology , Cell Adhesion , Microcirculation , Microvessels/physiology , Biotin/chemistry , Drug Carriers , Endothelial Cells/cytology , Humans , Lab-On-A-Chip Devices , Microspheres , Models, Anatomic , Neutrophils/cytology , Particle Size , Polystyrenes/chemistry , Shear Strength , Stress, Mechanical
2.
Anal Chem ; 86(16): 8344-51, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25135319

ABSTRACT

Current in vitro models of the leukocyte adhesion cascade cannot be used for real-time studies of the entire leukocyte adhesion cascade, including rolling, adhesion, and migration in a single assay. In this study, we have developed and validated a novel bioinspired microfluidic assay (bMFA) and used it to test the hypothesis that blocking of specific steps in the adhesion/migration cascade significantly affects other steps of the cascade. The bMFA consists of an endothelialized microvascular network in communication with a tissue compartment via a 3 µm porous barrier. Human neutrophils in bMFA preferentially adhered to activated human endothelial cells near bifurcations with rolling and adhesion patterns in close agreement with in vivo observations. Treating endothelial cells with monoclonal antibodies to E-selectin or ICAM-1 or treating neutrophils with wortmannin reduced rolling, adhesion, and migration of neutrophils to 60%, 20%, and 18% of their respective control values. Antibody blocking of specific steps in the adhesion/migration cascade (e.g., mAb to E-selectin) significantly downregulated other steps of the cascade (e.g., migration). This novel in vitro assay provides a realistic human cell based model for basic science studies, identification of new treatment targets, selection of pathways to target validation, and rapid screening of candidate agents.


Subject(s)
Cell Communication , Endothelium, Vascular/cytology , Leukocytes/cytology , Microfluidic Analytical Techniques/methods , Adult , Cell Adhesion , Human Umbilical Vein Endothelial Cells , Humans , Leukocyte Rolling , Neutrophils/cytology
3.
Nanomedicine ; 10(8): 1711-8, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24941463

ABSTRACT

Rebuilding of infarcted myocardium by mesenchymal stem cells (MSCs) has not been successful because of poor cell survival due in part to insufficient blood supply after myocardial infarction (MI). We hypothesize that targeted delivery of vascular endothelial growth factor (VEGF) to MI can help regenerate vasculature in support of MSC therapy in a rat model of MI. VEGF-encapsulated immunoliposomes targeting overexpressed P-selectin in MI tissue were infused by tail vein immediately after MI. One week later, MSCs were injected intramyocardially. The cardiac function loss was moderated slightly by targeted delivery of VEGF or MSC treatment. Targeted VEGF+MSC combination treatment showed highest attenuation in cardiac function loss. The combination treatment also increased blood vessel density (80%) and decreased collagen content in post-MI tissue (33%). Engraftment of MSCs in the combination treatment group was significantly increased and the engrafted cells contributed to the restoration of blood vessels. FROM THE CLINICAL EDITOR: VEGF immunoliposomes targeting myocardial infarction tissue resulted in significantly higher attenuation of cardiac function loss when used in combination with mesenchymal stem cells. MSCs were previously found to have poor ability to restore cardiac tissue, likely as a result of poor blood supply in the affected areas. This new method counterbalances that weakness by the known effects of VEGF, as demonstrated in a rat model.


Subject(s)
Myocardial Infarction/drug therapy , Myocardial Infarction/therapy , Vascular Endothelial Growth Factor A/administration & dosage , Vascular Endothelial Growth Factor A/therapeutic use , Animals , Blood Vessels/drug effects , Collagen/metabolism , Disease Models, Animal , Mesenchymal Stem Cell Transplantation , Rats
4.
Microvasc Res ; 89: 107-14, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23557880

ABSTRACT

OBJECTIVE: Leukocytes play a key role in the early response to tissue injury/infection resulting from physical, chemical or biological stimuli. This process involves the initiation of the leukocyte adhesion cascade mediated by a series of interactions between receptors and ligands on the endothelium and the leukocytes. Here, we characterize the adhesion profile of functionalized particles under physiological flow conditions in an idealized synthetic microvascular network (SMN) characterized by a bifurcation. We hypothesize that differences in the level of adhesion of functionalized particles in bifurcating SMNs are dependent on the ratio of adhesion molecules on the particles as well as geometric features of the in vitro networks. METHODS: Functionalized particles were prepared by coating their surfaces with different ratios of antibodies against ICAM-1 and E-selectin (aICAM-1:aE-selectin=100:0, 70:30, 50:50, 30:70, and 0:100). The adhesion of functionalized particles to 4h TNF-α activated human umbilical vein endothelial cells under shear flow (0.5, 2, and 4dyn/cm(2)) in bifurcating SMNs and in a parallel plate flow chamber was then quantified. RESULTS: The level of adhesion of 50:50 aICAM-1:aE-selectin particles was significantly higher compared to other particles in the bifurcating SMNs (~1.5-4 fold higher). However, in the parallel plate flow chamber 70:30 aICAM-1:aE-selectin particles exhibited a significantly higher level of adhesion (~1.5-2.5 fold higher). Furthermore, the adhesion of particles in junction regions was about 3-18 fold higher than that in straight sections of the SMNs. As expected, in straight sections of the SMNs and in the parallel plate flow chamber particle adhesion increased with decreasing shear. However, particle adhesion did not change significantly with decreasing shear at the junction regions of SMNs for all functionalized particles. CONCLUSION: Adhesion efficiency of functionalized particles is significantly affected by cell-adhesion molecule ratio density as well as geometric features of the vessels. Moreover, the differential adhesion patterns of particles between straight sections of bifurcating SMNs and parallel plate flow chamber, as well as straight sections and junction regions of bifurcating SMNs, indicates that adhesion profile of particles is highly dependent on the vascular geometry of the system used.


Subject(s)
Endothelium, Vascular/cytology , Microvessels , Antibodies, Monoclonal/chemistry , Cell Adhesion , Drug Carriers , E-Selectin/metabolism , Endothelium, Vascular/pathology , Human Umbilical Vein Endothelial Cells , Humans , Intercellular Adhesion Molecule-1/metabolism , Leukocytes/cytology , Ligands , Microcirculation , Models, Cardiovascular , Polystyrenes/chemistry , Shear Strength , Stress, Mechanical
5.
EuroIntervention ; 16(18): e1496-e1502, 2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33226002

ABSTRACT

AIMS: Multiple endpoints with varying clinical relevance are available to establish the efficacy of device-based treatments. Given the variance among blood pressure measures and medication changes in hypertension trials, we performed a win ratio analysis of outcomes in a sham-controlled, randomised trial of renal denervation (RDN) in patients with uncontrolled hypertension despite commonly prescribed antihypertensive medications. We propose a novel prioritised endpoint framework for determining the treatment benefit of RDN compared with sham control. METHODS AND RESULTS: We analysed the SPYRAL HTN-ON MED pilot study data using a prioritised hierarchical endpoint comprised of 24-hour mean ambulatory systolic blood pressure (SBP), office SBP, and medication burden. A generalised pairwise comparisons methodology (win ratio) was extended to examine this endpoint. Clinically relevant thresholds of 5 and 10 mmHg were used for comparisons of ambulatory and office SBP, respectively, and therefore to define treatment "winners" and "losers". For a total number of 1,596 unmatched pairs, the RDN subject was the winner in 1,050 pairs, the RDN subject was the loser in 378 pairs, and 168 pairs were tied. The win ratio in favour of RDN was 2.78 (95% confidence interval [CI]: 1.58 to 5.48; p<0.001) and corresponding net benefit statistic was 0.42 (95% CI: 0.20 to 0.63). Sensitivity analyses performed with differing blood pressure thresholds and according to drug adherence testing demonstrated consistent results. CONCLUSIONS: The win ratio method addresses prior limitations by enabling inclusion of more patient-oriented results while prioritising those endpoints considered most clinically important. Applying these methods to the SPYRAL HTN-ON MED pilot study (ClinicalTrials.gov Identifier: NCT02439775), RDN was determined to be superior regarding a hierarchical endpoint and a "winner" compared with sham control patients.


Subject(s)
Hypertension , Sympathectomy , Antihypertensive Agents/therapeutic use , Blood Pressure , Humans , Hypertension/drug therapy , Hypertension/surgery , Kidney , Pilot Projects , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL