Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Virol ; : e0068124, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953379

ABSTRACT

Serum-neutralizing antibody titers are a critical measure of vaccine immunogenicity and are used to determine flavivirus seroprevalence in study populations. An effective dengue virus (DENV) vaccine must confer simultaneous protection against viruses grouped within four antigenic serotypes. Existing flavivirus neutralization assays, including the commonly used plaque/focus reduction neutralization titer (PRNT/FRNT) assay, require an individual assay for each virus, serotype, and strain and easily become a labor-intensive and time-consuming effort for large epidemiological studies or vaccine trials. Here, we describe a multiplex reporter virus particle neutralization titer (TetraPlex RVPNT) assay for DENV that allows simultaneous quantitative measures of antibody-mediated neutralization of infection against all four DENV serotypes in a single low-volume clinical sample and analyzed by flow cytometry. Comparative studies confirm that the neutralization titers of antibodies measured by the TetraPlex RVPNT assay are similar to FRNT/PRNT assay approaches performed separately for each viral strain. The use of this high-throughput approach enables the careful serological study in DENV endemic populations and vaccine recipients required to support the development of a safe and effective tetravalent DENV vaccine. IMPORTANCE: As a mediator of protection against dengue disease and a serological indicator of prior infection, the detection and quantification of neutralizing antibodies against DENV is an important "gold standard" tool. However, execution of traditional neutralizing antibody assays is often cumbersome and requires repeated application for each virus or serotype. The optimized RVPNT assay described here is high-throughput, easily multiplexed across multiple serotypes, and targets reporter viral particles that can be robustly produced for all four DENV serotypes. The use of this transformative RVPNT assay will support the expansion of neutralizing antibody datasets to answer research and public health questions often limited by the more cumbersome neutralizing antibody assays and the need for greater quantities of test serum.

2.
Nature ; 526(7571): 122-5, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26416728

ABSTRACT

Influenza A viruses pose a major public health threat by causing seasonal epidemics and sporadic pandemics. Their epidemiological success relies on airborne transmission from person to person; however, the viral properties governing airborne transmission of influenza A viruses are complex. Influenza A virus infection is mediated via binding of the viral haemagglutinin (HA) to terminally attached α2,3 or α2,6 sialic acids on cell surface glycoproteins. Human influenza A viruses preferentially bind α2,6-linked sialic acids whereas avian influenza A viruses bind α2,3-linked sialic acids on complex glycans on airway epithelial cells. Historically, influenza A viruses with preferential association with α2,3-linked sialic acids have not been transmitted efficiently by the airborne route in ferrets. Here we observe efficient airborne transmission of a 2009 pandemic H1N1 (H1N1pdm) virus (A/California/07/2009) engineered to preferentially bind α2,3-linked sialic acids. Airborne transmission was associated with rapid selection of virus with a change at a single HA site that conferred binding to long-chain α2,6-linked sialic acids, without loss of α2,3-linked sialic acid binding. The transmissible virus emerged in experimentally infected ferrets within 24 hours after infection and was remarkably enriched in the soft palate, where long-chain α2,6-linked sialic acids predominate on the nasopharyngeal surface. Notably, presence of long-chain α2,6-linked sialic acids is conserved in ferret, pig and human soft palate. Using a loss-of-function approach with this one virus, we demonstrate that the ferret soft palate, a tissue not normally sampled in animal models of influenza, rapidly selects for transmissible influenza A viruses with human receptor (α2,6-linked sialic acids) preference.


Subject(s)
Adaptation, Physiological , Influenza A Virus, H1N1 Subtype/physiology , Palate, Soft/metabolism , Palate, Soft/virology , Receptors, Virus/metabolism , Selection, Genetic , Adaptation, Physiological/genetics , Animals , Epithelial Cells/metabolism , Epithelial Cells/virology , Female , Ferrets/virology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza A Virus, H1N1 Subtype/chemistry , Influenza A Virus, H1N1 Subtype/genetics , Male , Molecular Sequence Data , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology , Palate, Soft/chemistry , Respiratory System/cytology , Respiratory System/metabolism , Respiratory System/virology , Selection, Genetic/genetics , Sialic Acids/chemistry , Sialic Acids/metabolism , Swine/virology
3.
PLoS Pathog ; 13(8): e1006565, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28817732

ABSTRACT

The Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic betacoronavirus that was first detected in humans in 2012 as a cause of severe acute respiratory disease. As of July 28, 2017, there have been 2,040 confirmed cases with 712 reported deaths. While many infections have been fatal, there have also been a large number of mild or asymptomatic cases discovered through monitoring and contact tracing. New Zealand white rabbits are a possible model for asymptomatic infection with MERS-CoV. In order to discover more about non-lethal infections and to learn whether a single infection with MERS-CoV would protect against reinfection, we inoculated rabbits with MERS-CoV and monitored the antibody and inflammatory response. Following intranasal infection, rabbits developed a transient dose-dependent pulmonary infection with moderately high levels of viral RNA, viral antigen, and perivascular inflammation in multiple lung lobes that was not associated with clinical signs. The rabbits developed antibodies against viral proteins that lacked neutralizing activity and the animals were not protected from reinfection. In fact, reinfection resulted in enhanced pulmonary inflammation, without an associated increase in viral RNA titers. Interestingly, passive transfer of serum from previously infected rabbits to naïve rabbits was associated with enhanced inflammation upon infection. We further found this inflammation was accompanied by increased recruitment of complement proteins compared to primary infection. However, reinfection elicited neutralizing antibodies that protected rabbits from subsequent viral challenge. Our data from the rabbit model suggests that people exposed to MERS-CoV who fail to develop a neutralizing antibody response, or persons whose neutralizing antibody titers have waned, may be at risk for severe lung disease on re-exposure to MERS-CoV.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Coronavirus Infections/immunology , Animals , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique , Immunohistochemistry , Inflammation/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Neutralization Tests , Polymerase Chain Reaction , Rabbits
4.
J Virol ; 91(19)2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28701401

ABSTRACT

The recent outbreak of avian origin H10N7 influenza among seals in northern Europe and two fatal human infections with an avian H10N8 virus in China have demonstrated that H10 viruses can spread between mammals and cause severe disease in humans. To gain insight into the potential for H10 viruses to cross the species barrier and to identify a candidate vaccine strain, we evaluated the in vitro and in vivo properties and antibody response in ferrets to 20 diverse H10 viruses. H10 virus infection of ferrets caused variable weight loss, and all 20 viruses replicated throughout the respiratory tract; however, replication in the lungs was highly variable. In glycan-binding assays, the H10 viruses preferentially bound "avian-like" α2,3-linked sialic acids. Importantly, several isolates also displayed strong binding to long-chain "human-like" α2,6-linked sialic acids and exhibited comparable or elevated neuraminidase activity relative to human H1N1, H2N2, and H3N2 viruses. In hemagglutination inhibition assays, 12 antisera cross-reacted with ≥14 of 20 H10 viruses, and 7 viruses induced neutralizing activity against ≥15 of the 20 viruses. By combining data on weight loss, viral replication, and the cross-reactive antibody response, we identified A/mallard/Portugal/79906/2009 (H10N7) as a suitable virus for vaccine development. Collectively, our findings suggest that H10 viruses may continue to sporadically infect humans and other mammals, underscoring the importance of developing an H10 vaccine for pandemic preparedness.IMPORTANCE Avian origin H10 influenza viruses sporadically infect humans and other mammals; however, little is known about viruses of this subtype. Thus, we characterized the biological properties of 20 H10 viruses in vitro and in ferrets. Infection caused mild to moderate weight loss (5 to 15%), with robust viral replication in the nasal tissues and variable replication in the lung. H10 viruses preferentially bind "avian-like" sialic acids, although several isolates also displayed binding to "human-like" sialic acid receptors. This is consistent with the ability of H10 viruses to cross the species barrier and warrants selection of an H10 vaccine strain. By evaluating the cross-reactive antibody response to the H10 viruses and combining this analysis with viral replication and weight loss findings, we identified A/mallard/Portugal/79906/2009 (H10N7) as a suitable H10 vaccine strain.

5.
J Virol ; 91(24)2017 12 15.
Article in English | MEDLINE | ID: mdl-29046448

ABSTRACT

Influenza viruses of the H1N1, H2N2, and H3N2 subtypes have caused previous pandemics. H2 influenza viruses represent a pandemic threat due to continued circulation in wild birds and limited immunity in the human population. In the event of a pandemic, antiviral agents are the mainstay for treatment, but broadly neutralizing antibodies (bNAbs) may be a viable alternative for short-term prophylaxis or treatment. The hemagglutinin stem binding bNAbs CR6261 and CR9114 have been shown to protect mice from severe disease following challenge with H1N1 and H5N1 and with H1N1, H3N2, and influenza B viruses, respectively. Early studies with CR6261 and CR9114 showed weak in vitro activity against human H2 influenza viruses, but the in vivo efficacy against H2 viruses is unknown. Therefore, we evaluated these antibodies against human- and animal-origin H2 viruses A/Ann Arbor/6/1960 (H2N2) (AA60) and A/swine/MO/4296424/06 (H2N3) (Sw06). In vitro, CR6261 neutralized both H2 viruses, while CR9114 only neutralized Sw06. To evaluate prophylactic efficacy, mice were given CR6261 or CR9114 and intranasally challenged 24 h later with lethal doses of AA60 or Sw06. Both antibodies reduced mortality, weight loss, airway inflammation, and pulmonary viral load. Using engineered bNAb variants, antibody-mediated cell cytotoxicity reporter assays, and Fcγ receptor-deficient (Fcer1g-/-) mice, we show that the in vivo efficacy of CR9114 against AA60 is mediated by Fcγ receptor-dependent mechanisms. Collectively, these findings demonstrate the in vivo efficacy of CR6261 and CR9114 against H2 viruses and emphasize the need for in vivo evaluation of bNAbs.IMPORTANCE bNAbs represent a strategy to prevent or treat infection by a wide range of influenza viruses. The evaluation of these antibodies against H2 viruses is important because H2 viruses caused a pandemic in 1957 and could cross into humans again. We demonstrate that CR6261 and CR9114 are effective against infection with H2 viruses of both human and animal origin in mice, despite the finding that CR9114 did not display in vitro neutralizing activity against the human H2 virus. These findings emphasize the importance of in vivo evaluation and testing of bNAbs.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Influenza A Virus, H2N2 Subtype/immunology , Influenza, Human/prevention & control , Neutralization Tests/standards , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/genetics , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/genetics , Antibodies, Viral/administration & dosage , Cross Reactions , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza A Virus, H2N2 Subtype/pathogenicity , Influenza, Human/immunology , Mice , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Receptors, IgG/deficiency , Receptors, IgG/genetics , Receptors, IgG/immunology
6.
PLoS Pathog ; 12(12): e1006121, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28027316

ABSTRACT

[This corrects the article DOI: 10.1371/journal.ppat.1003971.].

7.
J Gen Virol ; 98(2): 155-165, 2017 02.
Article in English | MEDLINE | ID: mdl-27983474

ABSTRACT

Human infections with A/Jiangxi-Donghu/346/2013 (H10N8) virus have raised concerns about its pandemic potential. In order to develop a vaccine against this virus, the immunogenicity of its haemagglutinin protein was evaluated in mice. Using both whole-virion and recombinant subunit protein vaccines, we showed that two doses of either vaccine elicited neutralizing antibody responses. The protective efficacy of the vaccine-induced responses was assessed using a reverse-genetics-derived H10 reassortant virus on the A/Puerto Rico/8/34 (H1N1) backbone. The reassortant virus replicated efficiently in the respiratory tract of unvaccinated mice whereas vaccinated mice were completely protected from challenge, with no detectable viral load in the lower respiratory tract. Finally, the serum neutralizing antibody responses elicited by the H10 vaccines also exhibited cross-neutralizing activity against three heterologous wild-type H10 viruses. Collectively, these findings demonstrate that different vaccine platforms presenting the H10 haemagglutinin protein induce protective immunity.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunogenicity, Vaccine , Influenza A Virus, H10N8 Subtype/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/blood , Animals , Cross Reactions , Dogs , HEK293 Cells , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza A Virus, H10N8 Subtype/genetics , Influenza A Virus, H10N8 Subtype/physiology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/genetics , Influenza, Human/blood , Influenza, Human/immunology , Influenza, Human/prevention & control , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Reassortant Viruses/genetics , Reassortant Viruses/immunology , Respiratory System/virology , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Virus Replication
8.
J Infect Dis ; 213(10): 1557-61, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26941283

ABSTRACT

With >1600 documented human infections with Middle East respiratory syndrome coronavirus (MERS-CoV) and a case fatality rate of approximately 36%, medical countermeasures are needed to prevent and limit the disease. We examined the in vivo efficacy of the human monoclonal antibody m336, which has high neutralizing activity against MERS-CoV in vitro. m336 was administered to rabbits intravenously or intranasally before infection with MERS-CoV. Prophylaxis with m336 resulted in a reduction of pulmonary viral RNA titers by 40-9000-fold, compared with an irrelevant control antibody with little to no inflammation or viral antigen detected. This protection in rabbits supports further clinical development of m336.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Viral/therapeutic use , Coronavirus Infections/prevention & control , Middle East Respiratory Syndrome Coronavirus/immunology , Administration, Intranasal , Administration, Intravenous , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/blood , Coronavirus Infections/immunology , Disease Models, Animal , Female , Humans , Immunoglobulins, Intravenous , Lung/virology , Middle East Respiratory Syndrome Coronavirus/genetics , RNA, Viral/analysis , Rabbits
9.
PLoS Pathog ; 10(3): e1003971, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24603687

ABSTRACT

Reassortment of influenza viral RNA (vRNA) segments in co-infected cells can lead to the emergence of viruses with pandemic potential. Replication of influenza vRNA occurs in the nucleus of infected cells, while progeny virions bud from the plasma membrane. However, the intracellular mechanics of vRNA assembly into progeny virions is not well understood. Here we used recent advances in microscopy to explore vRNA assembly and transport during a productive infection. We visualized four distinct vRNA segments within a single cell using fluorescent in situ hybridization (FISH) and observed that foci containing more than one vRNA segment were found at the external nuclear periphery, suggesting that vRNA segments are not exported to the cytoplasm individually. Although many cytoplasmic foci contain multiple vRNA segments, not all vRNA species are present in every focus, indicating that assembly of all eight vRNA segments does not occur prior to export from the nucleus. To extend the observations made in fixed cells, we used a virus that encodes GFP fused to the viral polymerase acidic (PA) protein (WSN PA-GFP) to explore the dynamics of vRNA assembly in live cells during a productive infection. Since WSN PA-GFP colocalizes with viral nucleoprotein and influenza vRNA segments, we used it as a surrogate for visualizing vRNA transport in 3D and at high speed by inverted selective-plane illumination microscopy. We observed cytoplasmic PA-GFP foci colocalizing and traveling together en route to the plasma membrane. Our data strongly support a model in which vRNA segments are exported from the nucleus as complexes that assemble en route to the plasma membrane through dynamic colocalization events in the cytoplasm.


Subject(s)
Influenza A virus/physiology , RNA, Viral/metabolism , Virus Assembly/physiology , Animals , Blotting, Western , Cell Line, Tumor , Cytoplasm/metabolism , Cytoplasm/virology , Fluorescent Antibody Technique , Humans , In Situ Hybridization, Fluorescence , Microscopy, Confocal , Viral Proteins/metabolism , Virion/metabolism
10.
J Virol ; 88(23): 13879-91, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25187553

ABSTRACT

UNLABELLED: Ferrets are a valuable model for influenza virus pathogenesis, virus transmission, and antiviral therapy studies. However, the contributions of the volume of inoculum administered and the ferret's respiratory tract anatomy to disease outcome have not been explored. We noted variations in clinical disease outcomes and the volume of inoculum administered and investigated these differences by administering two influenza viruses (A/California/07/2009 [H1N1 pandemic] and A/Minnesota/11/2010 [H3N2 variant]) to ferrets intranasally at a dose of 10(6) 50% tissue culture infective doses in a range of inoculum volumes (0.2, 0.5, or 1.0 ml) and followed viral replication, clinical disease, and pathology over 6 days. Clinical illness and respiratory tract pathology were the most severe and most consistent when the viruses were administered in a volume of 1.0 ml. Using a modified micro-computed tomography imaging method and examining gross specimens, we found that the right main-stem bronchus was consistently larger in diameter than the left main-stem bronchus, though the latter was longer and straighter. These anatomic features likely influence the distribution of the inoculum in the lower respiratory tract. A 1.0-ml volume of inoculum is optimal for delivery of virus to the lower respiratory tract of ferrets, particularly when evaluation of clinical disease is desired. Furthermore, we highlight important anatomical features of the ferret lung that influence the kinetics of viral replication, clinical disease severity, and lung pathology. IMPORTANCE: Ferrets are a valuable model for influenza virus pathogenesis, virus transmission, and antiviral therapy studies. Clinical disease in ferrets is an important parameter in evaluating the virulence of novel influenza viruses, and findings are extrapolated to virulence in humans. Therefore, it is highly desirable that the data from different laboratories be accurate and reproducible. We have found that, even when the same virus was administered at similar doses, different investigators reported a range of clinical disease outcomes, from asymptomatic infection to severe weight loss, ocular and nasal discharge, sneezing, and lethargy. We found that a wide range of inoculum volumes was used to experimentally infect ferrets, and we sought to determine whether the variations in disease outcome were the result of the volume of inoculum administered. These data highlight some less explored features of the model, methods of experimental infection, and clinical disease outcomes in a research setting.


Subject(s)
Influenza A Virus, H1N1 Subtype/growth & development , Influenza A Virus, H3N2 Subtype/growth & development , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , Respiratory System/pathology , Respiratory System/virology , Viral Load , Administration, Intranasal , Animals , Disease Models, Animal , Female , Ferrets , Histocytochemistry , Male , Severity of Illness Index , Tomography, X-Ray Computed
11.
J Virol ; 88(5): 2867-76, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24371061

ABSTRACT

UNLABELLED: H2 influenza viruses have not circulated in humans since 1968, and therefore a significant portion of the population would be susceptible to infection should H2 influenza viruses reemerge. H2 influenza viruses continue to circulate in avian reservoirs worldwide, and these reservoirs are a potential source from which these viruses could emerge. Three reassortant cold-adapted (ca) H2 pandemic influenza vaccine candidates with hemagglutinin (HA) and neuraminidase (NA) genes derived from the wild-type A/Japan/305/1957 (H2N2) (Jap/57), A/mallard/6750/1978 (H2N2) (mal/78), or A/swine/MO/4296424/2006 (H2N3) (sw/06) viruses and the internal protein gene segments from the A/Ann Arbor/6/60 ca virus were generated by plasmid-based reverse genetics (Jap/57 ca, mal/78 ca, and sw/06 ca, respectively). The vaccine candidates exhibited the in vitro phenotypes of temperature sensitivity and cold adaptation and were restricted in replication in the respiratory tract of ferrets. In mice and ferrets, the vaccines elicited neutralizing antibodies and conferred protection against homologous wild-type virus challenge. Of the three candidates, the sw/06 ca vaccine elicited cross-reactive antibodies and provided significant protection against the greatest number of heterologous viruses. These observations suggest that the sw/06 ca vaccine should be further evaluated in a clinical trial as an H2 pandemic influenza vaccine candidate. IMPORTANCE: Influenza pandemics arise when novel influenza viruses are introduced into a population with little prior immunity to the new virus and often result in higher rates of illness and death than annual seasonal influenza epidemics. An influenza H2 subtype virus caused a pandemic in 1957, and H2 viruses circulated in humans till 1968. H2 influenza viruses continue to circulate in birds, and the development of an H2 influenza vaccine candidate is therefore considered a priority in preparing for future pandemics. However, we cannot predict whether a human H2 virus will reemerge or a novel avian H2 virus will emerge. We identified three viruses as suitable candidates for further evaluation as vaccines to protect against H2 influenza viruses and evaluated the immune responses and protection that these three vaccines provided in mice and ferrets.


Subject(s)
Influenza A Virus, H2N2 Subtype/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Vaccines, Attenuated/immunology , Amino Acid Sequence , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cross Reactions/immunology , Female , Ferrets , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H2N2 Subtype/genetics , Mice , Molecular Sequence Data , Orthomyxoviridae Infections/pathology , Reassortant Viruses/genetics , Reassortant Viruses/immunology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/pathology , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/virology , Sequence Alignment , Virus Replication
12.
Proc Natl Acad Sci U S A ; 108(3): 1140-5, 2011 Jan 18.
Article in English | MEDLINE | ID: mdl-21199945

ABSTRACT

The robust immune response to a single dose of pandemic 2009 H1N1 vaccine suggests that a large segment of the population has been previously primed. We evaluated the effect of seasonal (s) H1N1 infection, s-trivalent inactivated vaccine (s-TIV), and trivalent s-live attenuated influenza vaccine (s-LAIV) before immunization with a pandemic live attenuated influenza vaccine (p-LAIV) in mice. We compared serum and mucosal antibody and pulmonary CD8 and CD4 responses and the virologic response to challenge with a wild-type 2009 pandemic H1N1 (p-H1N1) virus. Two doses of p-LAIV induced cellular immune and robust ELISA and neutralizing antibody responses that were associated with complete protection from p-H1N1 challenge. A single dose of p-LAIV induced a cellular response and ELISA but not a neutralizing antibody response, and incomplete protection from p-H1N1 virus challenge. Primary infection with s-H1N1 influenza virus followed by a dose of p-LAIV resulted in cross-reactive ELISA antibodies and a robust cellular immune response that was also associated with complete protection from p-H1N1 virus challenge. A lower-magnitude but similar response associated with partial protection was seen in mice that received a dose of s-LAIV followed by p-LAIV. Mice that received a dose of s-TIV followed by p-LAIV did not show any evidence of priming. In summary, prior infection with a seasonal influenza virus or s-LAIV primed mice for a robust response to a single dose of p-LAIV that was associated with protection equivalent to two doses of the matched pandemic vaccine.


Subject(s)
Antibodies, Viral/analysis , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/epidemiology , Influenza, Human/immunology , Pandemics , Animals , Antibodies, Viral/blood , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Enzyme-Linked Immunosorbent Assay , Humans , Influenza, Human/prevention & control , Lung/immunology , Mice , Vaccines, Attenuated/immunology , Vaccines, Inactivated/immunology
13.
medRxiv ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38712100

ABSTRACT

The Advisory Committee on Immunization Practices (ACIP) recommended that dengue pre-vaccination screening tests for Dengvaxia administration have at least 98% specificity and 75% sensitivity. This study evaluates the performance of commercial anti-DENV IgG tests to identify tests that could be used for pre-vaccination screening. First, for 7 tests, we evaluated sensitivity and specificity in early convalescent dengue virus (DENV) infection, using 44 samples collected 7-30 days after symptom onset and confirmed by RT-PCR. Next, for the 5 best performing tests and two additional tests (with and without an external test reader) that became available later, we evaluated performance to detect past dengue infection among a panel of 44 specimens collected in 2018-2019 from healthy 9-16-year-old children from Puerto Rico. Finally, a full-scale evaluation was done with the 4 best performing tests using 400 specimens from the same population. We used virus focus reduction neutralization test and an in-house DENV IgG ELISA as reference standards. Of seven tests, five showed ≥75% sensitivity detecting anti-DENV IgG in early convalescent specimens with low cross-reactivity to Zika virus. For the detection of previous DENV infections the tests with the highest performance were the Euroimmun NS1 IgG ELISA (sensitivity 84.5%, specificity 97.1%) and CTK Dengue IgG rapid test R0065C with the test reader (sensitivity 76.2% specificity 98.1%). There are IgG tests available that can be used to accurately classify individuals with previous DENV infection as eligible for dengue vaccination to support safe vaccine implementation.

14.
PLoS Pathog ; 7(12): e1002443, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22241979

ABSTRACT

The epidemiological success of pandemic and epidemic influenza A viruses relies on the ability to transmit efficiently from person-to-person via respiratory droplets. Respiratory droplet (RD) transmission of influenza viruses requires efficient replication and release of infectious influenza particles into the air. The 2009 pandemic H1N1 (pH1N1) virus originated by reassortment of a North American triple reassortant swine (TRS) virus with a Eurasian swine virus that contributed the neuraminidase (NA) and M gene segments. Both the TRS and Eurasian swine viruses caused sporadic infections in humans, but failed to spread from person-to-person, unlike the pH1N1 virus. We evaluated the pH1N1 and its precursor viruses in a ferret model to determine the contribution of different viral gene segments on the release of influenza virus particles into the air and on the transmissibility of the pH1N1 virus. We found that the Eurasian-origin gene segments contributed to efficient RD transmission of the pH1N1 virus likely by modulating the release of influenza viral RNA-containing particles into the air. All viruses replicated well in the upper respiratory tract of infected ferrets, suggesting that factors other than viral replication are important for the release of influenza virus particles and transmission. Our studies demonstrate that the release of influenza viral RNA-containing particles into the air correlates with increased NA activity. Additionally, the pleomorphic phenotype of the pH1N1 virus is dependent upon the Eurasian-origin gene segments, suggesting a link between transmission and virus morphology. We have demonstrated that the viruses are released into exhaled air to varying degrees and a constellation of genes influences the transmissibility of the pH1N1 virus.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human/transmission , Models, Biological , Pandemics , Aerosols , Animals , Cell Line , Dogs , Ferrets , Genes, Viral/genetics , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H1N1 Subtype/ultrastructure , Influenza, Human/epidemiology , Influenza, Human/genetics , Influenza, Human/metabolism , Neuraminidase/genetics , Neuraminidase/metabolism , North America , Viral Proteins/genetics , Viral Proteins/metabolism
16.
PLoS Pathog ; 6(4): e1000849, 2010 Apr 08.
Article in English | MEDLINE | ID: mdl-20386712

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV) infection often caused severe end stage lung disease and organizing phase diffuse alveolar damage, especially in the elderly. The virus-host interactions that governed development of these acute end stage lung diseases and death are unknown. To address this question, we evaluated the role of innate immune signaling in protection from human (Urbani) and a recombinant mouse adapted SARS-CoV, designated rMA15. In contrast to most models of viral pathogenesis, infection of type I, type II or type III interferon knockout mice (129 background) with either Urbani or MA15 viruses resulted in clinical disease outcomes, including transient weight loss, denuding bronchiolitis and alveolar inflammation and recovery, identical to that seen in infection of wildtype mice. This suggests that type I, II and III interferon signaling play minor roles in regulating SARS pathogenesis in mouse models. In contrast, infection of STAT1-/- mice resulted in severe disease, high virus titer, extensive pulmonary lesions and 100% mortality by day 9 and 30 post-infection with rMA15 or Urbani viruses, respectively. Non-lethal in BALB/c mice, Urbani SARS-CoV infection in STAT1-/- mice caused disseminated infection involving the liver, spleen and other tissues after day 9. These findings demonstrated that SARS-CoV pathogenesis is regulated by a STAT1 dependent but type I, II and III interferon receptor independent, mechanism. In contrast to a well documented role in innate immunity, we propose that STAT1 also protects mice via its role as an antagonist of unrestrained cell proliferation.


Subject(s)
Receptors, Interferon/immunology , STAT1 Transcription Factor/immunology , Severe Acute Respiratory Syndrome/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Animals , Cytokines/biosynthesis , Female , Flow Cytometry , Gene Expression , Gene Expression Profiling , In Situ Hybridization , Interferon Type I/genetics , Interferon Type I/immunology , Interferon Type I/metabolism , Interferon-gamma/genetics , Interferon-gamma/immunology , Interferon-gamma/metabolism , Mice , Mice, Knockout , Receptors, Interferon/genetics , Receptors, Interferon/metabolism , Reverse Transcriptase Polymerase Chain Reaction , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Severe Acute Respiratory Syndrome/genetics , Severe Acute Respiratory Syndrome/metabolism
17.
J Infect Dis ; 203(7): 930-6, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21257740

ABSTRACT

The role of seasonal influenza vaccination in pandemic influenza A H1N1 disease is important to address, because a large segment of the population is vaccinated annually. We administered 1 or 2 doses of pandemic H1N1 vaccine (CA/7 ca), a seasonal trivalent inactivated (s-TIV), or live attenuated influenza vaccine (s-LAIV) to mice and ferrets and subsequently challenged them with a pandemic H1N1 virus. In both species, CA/7 ca was immunogenic and conferred complete protection against challenge. s-TIV did not confer protection in either animal model, and s-LAIV did not confer any protection in ferrets. In mice, 2 doses of s-LAIV led to complete protection in the upper respiratory tract and partial protection in the lungs. Our data indicate that vaccination with the seasonal influenza vaccines did not confer complete protection in the lower respiratory tract in either animal model, whereas the CA/7 ca vaccine conferred complete protection in both animal models.


Subject(s)
Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Disease Models, Animal , Female , Ferrets , Immunization, Secondary/methods , Lung/virology , Male , Mice , Mice, Inbred BALB C , Nasal Cavity/virology , Orthomyxoviridae Infections/immunology , Vaccination/methods , Viral Load
18.
mBio ; 13(6): e0254022, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36300929

ABSTRACT

Airborne transmission in ferrets is a key component of pandemic risk assessment. However, some emerging avian influenza viruses transmit between ferrets but do not spread in humans. Therefore, we evaluated sequential rounds of airborne transmission as an approach to enhance the predictive accuracy of the ferret model. We reasoned that infection of ferrets via the respiratory route and onward transmission would more closely model transmission in humans. We hypothesized that pandemic and seasonal viruses would transmit efficiently over two rounds of transmission, while emerging avian viruses would fail to transmit in a second round. The 2009 pandemic H1N1 (pdm09) and seasonal H3N2 viruses were compared to avian-origin H7N9 and H3N8 viruses. Depending on the virus strain, transmission efficiency varied from 50 to 100% during the first round of transmission; the efficiency for each virus did not change during the second round, and viral replication kinetics in both rounds of transmission were similar. Both the H1N1pdm09 and H7N9 viruses acquired specific mutations during sequential transmission, while the H3N2 and H3N8 viruses did not; however, a global analysis of host-adaptive mutations revealed that minimal changes were associated with transmission of H1N1 and H3N2 viruses, while a greater number of changes occurred in the avian H3N8 and H7N9 viruses. Thus, influenza viruses that transmit in ferrets maintain their transmission efficiency through serial rounds of transmission. This answers the question of whether ferrets can propagate viruses through more than one round of airborne transmission and emphasizes that transmission in ferrets is necessary but not sufficient to infer transmissibility in humans. IMPORTANCE Airborne transmission in ferrets is used to gauge the pandemic potential of emerging influenza viruses; however, some emerging influenza viruses that transmit between ferrets do not spread between humans. Therefore, we evaluated sequential rounds of airborne transmission in ferrets as a strategy to enhance the predictive accuracy of the ferret model. Human influenza viruses transmitted efficiently (>83%) over two rounds of airborne transmission, demonstrating that, like humans, ferrets infected by the respiratory route can propagate the infection onward through the air. However, emerging avian influenza viruses with associated host-adaptive mutations also transmitted through sequential transmission. Thus, airborne transmission in ferrets is necessary but not sufficient to infer transmissibility in humans, and sequential transmission did not enhance pandemic risk assessment.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N8 Subtype , Influenza A Virus, H7N9 Subtype , Influenza, Human , Orthomyxoviridae Infections , Humans , Animals , Ferrets , Influenza A Virus, H3N2 Subtype , Influenza A Virus, H7N9 Subtype/genetics , Birds
19.
J Virol ; 84(15): 7695-702, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20504935

ABSTRACT

H2 influenza viruses have not circulated in humans since 1968, and therefore a large segment of the population would likely be susceptible to infection should H2 influenza viruses reemerge. The development of an H2 pandemic influenza virus vaccine candidate should therefore be considered a priority in pandemic influenza preparedness planning. We selected a group of geographically and temporally diverse wild-type H2 influenza viruses and evaluated the kinetics of replication and compared the ability of these viruses to induce a broadly cross-reactive antibody response in mice and ferrets. In both mice and ferrets, A/Japan/305/1957 (H2N2), A/mallard/NY/1978 (H2N2), and A/swine/MO/2006 (H2N3) elicited the broadest cross-reactive antibody responses against heterologous H2 influenza viruses as measured by hemagglutination inhibition and microneutralization assays. These data suggested that these three viruses may be suitable candidates for development as live attenuated H2 pandemic influenza virus vaccines.


Subject(s)
Antibodies, Viral/blood , Influenza A virus/growth & development , Influenza A virus/immunology , Animals , Antibodies, Neutralizing/immunology , Cross Reactions , Female , Ferrets , Hemagglutination Inhibition Tests , Influenza A Virus, H2N2 Subtype/growth & development , Influenza A Virus, H2N2 Subtype/immunology , Mice , Mice, Inbred BALB C , Neutralization Tests
20.
J Virol ; 84(3): 1289-301, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19906920

ABSTRACT

We characterized the cellular immune response to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in 12- to 14-month-old BALB/c mice, a model that mimics features of the human disease. Following intranasal administration, the virus replicated in the lungs, with peak titers on day 2 postinfection. Enhanced production of cytokines (tumor necrosis factor alpha [TNF-alpha] and interleukin-6 [IL-6]) and chemokines (CXCL10, CCL2, CCL3, and CCL5) correlated with migration of NK cells, macrophages, and plasmacytoid dendritic cells (pDC) into the lungs. By day 7, histopathologic evidence of pneumonitis was seen in the lungs when viral clearance occurred. At this time, a second wave of enhanced production of cytokines (TNF-alpha, IL-6, gamma interferon [IFN-gamma], IL-2, and IL-5), chemokines (CXCL9, CXCL10, CCL2, CCL3, and CCL5), and receptors (CXCR3, CCR2, and CCR5), was detected in the lungs, associated with an influx of T lymphocytes. Depletion of CD8(+) T cells at the time of infection did not affect viral replication or clearance. However, depletion of CD4(+) T cells resulted in an enhanced immune-mediated interstitial pneumonitis and delayed clearance of SARS-CoV from the lungs, which was associated with reduced neutralizing antibody and cytokine production and reduced pulmonary recruitment of lymphocytes. Innate defense mechanisms are able to control SARS-CoV infection in the absence of CD4(+) and CD8(+) T cells and antibodies. Our findings provide new insights into the pathogenesis of SARS, demonstrating the important role of CD4(+) but not CD8(+) T cells in primary SARS-CoV infection in this model.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Severe Acute Respiratory Syndrome/immunology , Severe acute respiratory syndrome-related coronavirus/physiology , Animals , Base Sequence , DNA Primers , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Inflammation Mediators/physiology , Mice , Mice, Inbred BALB C , Pneumonia/complications , Pneumonia/pathology , Polymerase Chain Reaction , Severe Acute Respiratory Syndrome/complications , Severe Acute Respiratory Syndrome/pathology
SELECTION OF CITATIONS
SEARCH DETAIL