Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters

Publication year range
1.
Antimicrob Agents Chemother ; 68(4): e0153923, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38470195

ABSTRACT

Murepavadin is a peptidomimetic that specifically targets the lipopolysaccharide transport protein LptD of Pseudomonas aeruginosa. Here, we found that murepavadin enhances the bactericidal efficacies of tobramycin and amikacin. We further demonstrated that murepavadin enhances bacterial respiration activity and subsequent membrane potential, which promotes intracellular uptake of aminoglycoside antibiotics. In addition, the murepavadin-amikacin combination displayed a synergistic bactericidal effect in a murine pneumonia model.


Subject(s)
Amikacin , Peptides, Cyclic , Pseudomonas Infections , Animals , Mice , Amikacin/pharmacology , Pseudomonas aeruginosa , Membrane Potentials , Anti-Bacterial Agents/pharmacology , Aminoglycosides/pharmacology , Tobramycin/pharmacology , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Microbial Sensitivity Tests
2.
Antimicrob Agents Chemother ; 65(7): e0269620, 2021 06 17.
Article in English | MEDLINE | ID: mdl-33875431

ABSTRACT

Ciprofloxacin is one of the most widely used antibiotics for treating Pseudomonas aeruginosa infections. However, P. aeruginosa acquires mutations that confer ciprofloxacin resistance, making treatment more difficult. Resistance is multifactorial, with mutations in multiple genes influencing the resistance phenotype. However, the contributions of individual mutations and mutation combinations to the amounts of ciprofloxacin that P. aeruginosa can tolerate are not well understood. Engineering P. aeruginosa strain PAO1 to contain mutations in any one of the resistance-associated genes gyrA, nfxB, rnfC, parC, and parE showed that only gyrA mutations increased the MIC for ciprofloxacin. Mutations in parC and parE increased the MIC of a gyrA mutant, making the bacteria ciprofloxacin resistant. Mutations in nfxB and rnfC increased the MIC, conferring resistance, only if both were mutated in a gyrA background. Mutations in all of gyrA, nfxB, rnfC, and parC/E further increased the MIC. These findings reveal an epistatic network of gene-gene interactions in ciprofloxacin resistance. We used this information to predict ciprofloxacin resistance/susceptibility for 274 isolates of P. aeruginosa from their genome sequences. Antibiotic susceptibility profiles were predicted correctly for 84% of the isolates. The majority of isolates for which prediction was unsuccessful were ciprofloxacin resistant, demonstrating the involvement of additional as yet unidentified genes and mutations in resistance. Our data show that gene-gene interactions can play an important role in antibiotic resistance and can be successfully incorporated into models predicting resistance phenotype.


Subject(s)
Ciprofloxacin , Pseudomonas aeruginosa , Ciprofloxacin/pharmacology , DNA Gyrase/genetics , DNA Topoisomerase IV/genetics , Drug Resistance, Bacterial/genetics , Fluoroquinolones , Microbial Sensitivity Tests , Mutation/genetics , Phenotype , Pseudomonas aeruginosa/genetics
3.
Int J Mol Sci ; 22(4)2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33672312

ABSTRACT

The problematic opportunistic pathogen Pseudomonas aeruginosa secretes a siderophore, pyoverdine. Pyoverdine scavenges iron needed by the bacteria for growth and for pathogenicity in a range of different infection models. PvdF, a hydroxyornithine transformylase enzyme, is essential for pyoverdine synthesis, catalysing synthesis of formylhydroxyornithine (fOHOrn) that forms part of the pyoverdine molecule and provides iron-chelating hydroxamate ligands. Using a mass spectrometry assay, we confirm that purified PvdF catalyses synthesis of fOHOrn from hydroxyornithine and formyltetrahydrofolate substrates. Site directed mutagenesis was carried out to investigate amino acid residues predicted to be required for enzymatic activity. Enzyme variants were assayed for activity in vitro and also in vivo, through measuring their ability to restore pyoverdine production to a pvdF mutant strain. Variants at two putative catalytic residues N168 and H170 greatly reduced enzymatic activity in vivo though did not abolish activity in vitro. Change of a third residue D229 abolished activity both in vivo and in vitro. A change predicted to block entry of N10-formyltetrahydrofolate (fTHF) to the active site also abolished activity both in vitro and in vivo. A co-purification assay showed that PvdF binds to an enzyme PvdA that catalyses synthesis of hydroxyornithine, with this interaction likely to increase the efficiency of fOHOrn synthesis. Our findings advance understanding of how P. aeruginosa synthesises pyoverdine, a key factor in host-pathogen interactions.


Subject(s)
Bacterial Proteins/metabolism , Hydroxymethyl and Formyl Transferases/metabolism , Mixed Function Oxygenases/metabolism , Siderophores/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Catalytic Domain , Hydroxymethyl and Formyl Transferases/genetics , Hydroxymethyl and Formyl Transferases/isolation & purification , Mixed Function Oxygenases/genetics , Mutagenesis, Site-Directed , Oligopeptides/biosynthesis , Protein Interaction Maps , Protein Stability , Pseudomonas aeruginosa/metabolism
4.
Mol Plant Microbe Interact ; 32(10): 1324-1335, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31107632

ABSTRACT

In ascomycetes and basidiomycetes, iron-responsive GATA-type transcriptional repressors are involved in regulating iron homeostasis, notably to prevent iron toxicity through control of iron uptake. To date, it has been unknown whether this iron regulator contributes toward mutualistic endosymbiosis of microbes with plants, a system where the endophyte must function within the constraints of an in-host existence, including a dependency on the host for nutrient acquisition. Functional characterization of one such protein, SreA from Epichloë festucae, a fungal endosymbiont of cool-season grasses, indicates that regulation of iron homeostasis processes is important for symbiotic maintenance. The deletion of the sreA gene (ΔsreA) led to iron-dependent aberrant hyphal growth and the gradual loss of endophyte hyphae from perennial ryegrass. SreA negatively regulates the siderophore biosynthesis and high-affinity iron uptake systems of E. festucae, similar to other fungi, resulting in iron accumulation in mutants. Our evidence suggests that SreA is involved in the processes that moderate Epichloë iron acquisition from the plant apoplast, because overharvesting of iron in ΔsreA mutants was detected as premature chlorosis of the host using a hydroponic plant growth assay. E. festucae appears to have a tightly regulated iron management system, involving SreA that balances endophyte growth with its survival and prevents overcompetition with the host for iron in the intercellular niche, thus promoting mutualistic associations. Mutations that interfere with Epichloë iron management negatively affect iron-dependent fungal growth and destabilize mutualistic Epichloë -ryegrass associations.


Subject(s)
Epichloe , GATA Transcription Factors , Lolium , Symbiosis , Epichloe/genetics , Fungal Proteins/genetics , GATA Transcription Factors/genetics , GATA Transcription Factors/metabolism , Iron/metabolism , Lolium/microbiology , Mutation , Symbiosis/genetics
5.
Antimicrob Agents Chemother ; 63(12)2019 09 09.
Article in English | MEDLINE | ID: mdl-31570397

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen that causes a wide range of acute and chronic infections. An increasing number of isolates have mutations that make them antibiotic resistant, making treatment difficult. To identify resistance-associated mutations we experimentally evolved the antibiotic sensitive strain P. aeruginosa PAO1 to become resistant to three widely used anti-pseudomonal antibiotics, ciprofloxacin, meropenem and tobramycin. Mutants could tolerate up to 2048-fold higher concentrations of antibiotic than strain PAO1. Genome sequences were determined for thirteen mutants for each antibiotic. Each mutant had between 2 and 8 mutations. For each antibiotic at least 8 genes were mutated in multiple mutants, demonstrating the genetic complexity of resistance. For all three antibiotics mutations arose in genes known to be associated with resistance, but also in genes not previously associated with resistance. To determine the clinical relevance of mutations uncovered in this study we analysed the corresponding genes in 558 isolates of P. aeruginosa from patients with chronic lung disease and in 172 isolates from the general environment. Many genes identified through experimental evolution had predicted function-altering changes in clinical isolates but not in environmental isolates, showing that mutated genes in experimentally evolved bacteria can predict those that undergo mutation during infection. Additionally, large deletions of up to 479kb arose in experimentally evolved meropenem resistant mutants and large deletions were present in 87 of the clinical isolates. These findings significantly advance understanding of antibiotic resistance in P. aeruginosa and demonstrate the validity of experimental evolution in identifying clinically-relevant resistance-associated mutations.

6.
Protein Expr Purif ; 160: 11-18, 2019 08.
Article in English | MEDLINE | ID: mdl-30878602

ABSTRACT

Bacteria contain sigma (σ) factors that control gene expression in response to various environmental stimuli. The alternative sigma factors σFpvI and σPvdS bind specifically to the antisigma factor FpvR. These proteins are an essential component of the pyoverdine-based system for iron uptake in Pseudomonas aeruginosa. Due to the uniqueness of this system, where the activities of both the σFpvI and σPvdS sigma factors are regulated by the same antisigma factor, the interactions between the antisigma protein FpvR20 and the σFpvI and σPvdS proteins have been widely studied in vivo. However, difficulties in obtaining soluble, recombinant preparations of the σFpvI and σPvdS proteins have limited their biochemical and structural characterizations. In this study, we describe a purification protocol that resulted in the production of soluble, recombinant His6-σFpvI/FpvR1-67, His6-σFpvI/FpvR1-89, His6-σPvdS/FpvR1-67 and His6-σPvdS/FpvR1-89 protein complexes (where FpvR1-67 and FpvR1-89 are truncated versions of FpvR20) at high purities and concentrations, appropriate for biophysical analyses by circular dichroism spectroscopy and analytical ultracentrifugation. These results showed the proteins to be folded in solution and led to the determination of the affinities of the protein-protein interactions within the His6-σFpvI/FpvR1-67 and His6-σPvdS/FpvR1-67 complexes. A comparison of these values with those previously reported for the His6-σFpvI/FpvR1-89 and His6-σPvdS/FpvR1-89 complexes is made.


Subject(s)
Bacterial Proteins/isolation & purification , Pseudomonas aeruginosa/metabolism , Sigma Factor/isolation & purification , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Protein Binding , Protein Folding , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Sigma Factor/chemistry , Sigma Factor/genetics , Sigma Factor/metabolism , Temperature
7.
Mol Microbiol ; 106(6): 891-904, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28971540

ABSTRACT

Alternative sigma (σ) factors govern expression of bacterial genes in response to diverse environmental signals. In Pseudomonas aeruginosa σPvdS directs expression of genes for production of a siderophore, pyoverdine, as well as a toxin and a protease. σFpvI directs expression of a receptor for ferripyoverdine import. Expression of the genes encoding σPvdS and σFpvI is iron-regulated and an antisigma protein, FpvR20 , post-translationally controls the activities of the sigma factors in response to the amount of ferripyoverdine present. Here we show that iron represses synthesis of σPvdS to a far greater extent than σFpvI . In contrast ferripyoverdine exerts similar effects on the activities of both sigma factors. Using a combination of in vivo and in vitro assays we show that σFpvI and σPvdS have comparable affinities for, and are equally inhibited by, FpvR20 . Importantly, in the absence of ferripyoverdine the amount of FpvR20 per cell is lower than the amount of σFpvI and σPvdS , allowing basal expression of target genes that is required to activate the signalling pathway when ferripyoverdine is present. This complex interplay of transcriptional and post-translational regulation enables a co-ordinated response to ferripyoverdine but distinct responses to iron.


Subject(s)
Bacterial Proteins/metabolism , Iron/metabolism , Pseudomonas aeruginosa/metabolism , Repressor Proteins/metabolism , Sigma Factor/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Iron Chelating Agents , Oligopeptides/genetics , Oligopeptides/metabolism , Protein Binding , Pseudomonas aeruginosa/genetics , Regulatory Elements, Transcriptional , Repressor Proteins/genetics , Siderophores/genetics , Siderophores/metabolism , Sigma Factor/antagonists & inhibitors , Sigma Factor/genetics
8.
Article in English | MEDLINE | ID: mdl-30201819

ABSTRACT

The lungs of individuals with cystic fibrosis (CF) become chronically infected with Pseudomonas aeruginosa that is difficult to eradicate by antibiotic treatment. Two key P. aeruginosa antibiotic resistance mechanisms are the AmpC ß-lactamase that degrades ß-lactam antibiotics and MexXYOprM, a three-protein efflux pump that expels aminoglycoside antibiotics from the bacterial cells. Levels of antibiotic resistance gene expression are likely to be a key factor in antibiotic resistance but have not been determined during infection. The aims of this research were to investigate the expression of the ampC and mexX genes during infection in patients with CF and in bacteria isolated from the same patients and grown under laboratory conditions. P. aeruginosa isolates from 36 CF patients were grown in laboratory culture and gene expression measured by reverse transcription-quantitative PCR (RT-qPCR). The expression of ampC varied over 20,000-fold and that of mexX over 2,000-fold between isolates. The median expression levels of both genes were increased by the presence of subinhibitory concentrations of antibiotics. To measure P. aeruginosa gene expression during infection, we carried out RT-qPCR using RNA extracted from fresh sputum samples obtained from 31 patients. The expression of ampC varied over 4,000-fold, while mexX expression varied over 100-fold, between patients. Despite these wide variations, median levels of expression of ampC in bacteria in sputum were similar to those in laboratory-grown bacteria. The expression of mexX was higher in sputum than in laboratory-grown bacteria. Overall, our data demonstrate that genes that contribute to antibiotic resistance can be highly expressed in patients, but there is extensive isolate-to-isolate and patient-to-patient variation.


Subject(s)
Cystic Fibrosis/microbiology , Drug Resistance, Microbial/genetics , Pseudomonas aeruginosa/genetics , Adolescent , Adult , Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Child , Cystic Fibrosis/drug therapy , Female , Humans , Male , Microbial Sensitivity Tests/methods , Middle Aged , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Sputum/microbiology , Young Adult , beta-Lactamases/genetics
9.
Fungal Genet Biol ; 111: 60-72, 2018 02.
Article in English | MEDLINE | ID: mdl-29155067

ABSTRACT

The symbiosis between Epichloë festucae and its host perennial ryegrass (Lolium perenne) is a model system for mutualistic interactions in which the fungal endophyte grows between plant shoot cells and acquires host nutrients to survive. E. festucae synthesises the siderophore epichloënin A (EA) via SidN, a non-ribosomal peptide synthetase (NRPS). EA is involved in the acquisition of iron, an essential micronutrient, as part of the process of maintaining a stable symbiotic interaction. Here, we mutated a different NRPS gene sidC and showed that it is required for production of a second siderophore ferricrocin (FC). Furthermore mutations in sidA, encoding an l-ornithine N5-monooxygenase, abolished both EA and FC production. Axenic growth phenotypes of the siderophore mutants were altered relative to wild-type (WT) providing insights into the roles of E. festucae siderophores in iron trafficking and consequently in growth and morphogenesis. During iron-limitation, EA is the predominant siderophore and in addition to its role in iron acquisition it appears to play roles in intracellular iron sequestration and oxidative stress tolerance. FC in contrast is exclusively located intracellularly and is the dominant siderophore under conditions of iron sufficiency when it is likely to have roles in iron storage and iron transport. Intriguingly, EA acts to promote but may also moderate E. festucae growth (depending on the amount of available iron). We therefore hypothesise that coordinated cellular iron sequestration through FC and EA may be one of the mechanisms that E. festucae employs to manage and restrain its growth in response to iron fluxes and ultimately persist as a controlled symbiont.


Subject(s)
Epichloe/physiology , Iron/metabolism , Peptide Synthases/physiology , Siderophores/physiology , Epichloe/enzymology , Epichloe/genetics , Genes, Fungal , Homeostasis , Lolium/microbiology , Mutagenesis , Oxidative Stress , Peptide Synthases/biosynthesis , Peptide Synthases/genetics , Siderophores/biosynthesis , Siderophores/genetics
10.
Eur Respir J ; 49(4)2017 04.
Article in English | MEDLINE | ID: mdl-28446558

ABSTRACT

To characterise Pseudomonas aeruginosa populations during chronic lung infections of non-cystic fibrosis bronchiectasis patients, we used whole-genome sequencing to 1) assess the diversity of P. aeruginosa and the prevalence of multilineage infections; 2) seek evidence for cross-infection or common source acquisition; and 3) characterise P. aeruginosa adaptations.189 isolates, obtained from the sputa of 91 patients attending 16 adult bronchiectasis centres in the UK, were whole-genome sequenced.Bronchiectasis isolates were representative of the wider P. aeruginosa population. Of 24 patients from whom multiple isolates were examined, there were seven examples of multilineage infections, probably arising from multiple infection events. The number of nucleotide variants between genomes of isolates from different patients was in some cases similar to the variations observed between isolates from individual patients, implying the possible occurrence of cross-infection or common source acquisition.Our data indicate that during infections of bronchiectasis patients, P. aeruginosa populations adapt by accumulating loss-of-function mutations, leading to changes in phenotypes including different modes of iron acquisition and variations in biofilm-associated polysaccharides. The within-population diversification suggests that larger scale longitudinal surveillance studies will be required to capture cross-infection or common source acquisition events at an early stage.


Subject(s)
Bronchiectasis/microbiology , Cross Infection/microbiology , Pseudomonas Infections/complications , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/pathogenicity , Biofilms , Bronchiectasis/physiopathology , Cystic Fibrosis , Humans , Phenotype , Pseudomonas aeruginosa/isolation & purification , Sputum/microbiology , United Kingdom , Virulence Factors , Whole Genome Sequencing
11.
PLoS Pathog ; 11(8): e1005129, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26313907

ABSTRACT

Bacterial-fungal interactions have important physiologic and medical ramifications, but the mechanisms of these interactions are poorly understood. The gut is host to trillions of microorganisms, and bacterial-fungal interactions are likely to be important. Using a neutropenic mouse model of microbial gastrointestinal colonization and dissemination, we show that the fungus Candida albicans inhibits the virulence of the bacterium Pseudomonas aeruginosa by inhibiting P. aeruginosa pyochelin and pyoverdine gene expression, which plays a critical role in iron acquisition and virulence. Accordingly, deletion of both P. aeruginosa pyochelin and pyoverdine genes attenuates P. aeruginosa virulence. Heat-killed C. albicans has no effect on P. aeruginosa, whereas C. albicans secreted proteins directly suppress P. aeruginosa pyoverdine and pyochelin expression and inhibit P. aeruginosa virulence in mice. Interestingly, suppression or deletion of pyochelin and pyoverdine genes has no effect on P. aeruginosa's ability to colonize the GI tract but does decrease P. aeruginosa's cytotoxic effect on cultured colonocytes. Finally, oral iron supplementation restores P. aeruginosa virulence in P. aeruginosa and C. albicans colonized mice. Together, our findings provide insight into how a bacterial-fungal interaction can modulate bacterial virulence in the intestine. Previously described bacterial-fungal antagonistic interactions have focused on growth inhibition or colonization inhibition/modulation, yet here we describe a novel observation of fungal-inhibition of bacterial effectors critical for virulence but not important for colonization. These findings validate the use of a mammalian model system to explore the complexities of polymicrobial, polykingdom infections in order to identify new therapeutic targets for preventing microbial disease.


Subject(s)
Candida albicans/physiology , Oligopeptides/antagonists & inhibitors , Phenols/antagonists & inhibitors , Pseudomonas aeruginosa/pathogenicity , Thiazoles/antagonists & inhibitors , Animals , Farnesol/pharmacology , Female , Gastrointestinal Tract/microbiology , Iron/metabolism , Male , Mice , Mice, Inbred C3H , Oligopeptides/biosynthesis , Virulence
12.
J Biol Chem ; 290(40): 24424-37, 2015 Oct 02.
Article in English | MEDLINE | ID: mdl-26272617

ABSTRACT

Thiol dioxygenation is the initial oxidation step that commits a thiol to important catabolic or biosynthetic pathways. The reaction is catalyzed by a family of specific non-heme mononuclear iron proteins each of which is reported to react efficiently with only one substrate. This family of enzymes includes cysteine dioxygenase, cysteamine dioxygenase, mercaptosuccinate dioxygenase, and 3-mercaptopropionate dioxygenase. Using sequence alignment to infer cysteine dioxygenase activity, a cysteine dioxygenase homologue from Pseudomonas aeruginosa (p3MDO) has been identified. Mass spectrometry of P. aeruginosa under standard growth conditions showed that p3MDO is expressed in low levels, suggesting that this metabolic pathway is available to the organism. Purified recombinant p3MDO is able to oxidize both cysteine and 3-mercaptopropionic acid in vitro, with a marked preference for 3-mercaptopropionic acid. We therefore describe this enzyme as a 3-mercaptopropionate dioxygenase. Mössbauer spectroscopy suggests that substrate binding to the ferrous iron is through the thiol but indicates that each substrate could adopt different coordination geometries. Crystallographic comparison with mammalian cysteine dioxygenase shows that the overall active site geometry is conserved but suggests that the different substrate specificity can be related to replacement of an arginine by a glutamine in the active site.


Subject(s)
3-Mercaptopropionic Acid/chemistry , Bacterial Proteins/chemistry , Cysteine Dioxygenase/chemistry , Pseudomonas aeruginosa/enzymology , Amino Acid Sequence , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Cysteine/chemistry , Iron/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Oxygen/chemistry , Oxygen Consumption , Peptides/chemistry , Protein Binding , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Spectrophotometry , Substrate Specificity , Sulfhydryl Compounds
13.
J Bacteriol ; 196(12): 2265-76, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24727222

ABSTRACT

Cystic fibrosis (CF) patients suffer from chronic bacterial lung infections, most notably by Pseudomonas aeruginosa, which persists for decades in the lungs and undergoes extensive evolution. P. aeruginosa requires iron for virulence and uses the fluorescent siderophore pyoverdine to scavenge and solubilize ferric iron during acute infections. Pyoverdine mutants accumulate in the lungs of some CF patients, however, suggesting that the heme and ferrous iron acquisition pathways of P. aeruginosa are more important in this environment. Here, we sought to determine how evolution of P. aeruginosa in the CF lung affects iron acquisition and regulatory pathways through the use of longitudinal CF isolates. These analyses demonstrated a significant reduction of siderophore production during the course of CF lung infection in nearly all strains tested. Mass spectrometry analysis of one of these strains showed that the later CF isolate has streamlined the metabolic flux of extracellular heme through the HemO heme oxygenase, resulting in more-efficient heme utilization. Moreover, gene expression analysis shows that iron regulation via the PrrF small RNAs (sRNAs) is enhanced in the later CF isolate. Finally, analysis of P. aeruginosa gene expression in the lungs of various CF patients demonstrates that both PrrF and HemO are consistently expressed in the CF lung environment. Combined, these results suggest that heme is a critical source of iron during prolonged infection of the CF lung and that changes in iron and heme regulatory pathways play a crucial role in adaptation of P. aeruginosa to this ever-changing host environment.


Subject(s)
Cystic Fibrosis/microbiology , Homeostasis/physiology , Iron/metabolism , Oligopeptides/metabolism , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/metabolism , Adaptation, Physiological , Adolescent , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Child , Child, Preschool , Gene Expression Regulation, Bacterial/physiology , Homeostasis/genetics , Humans , Mutation , Oligopeptides/genetics , Pigments, Biological , Pseudomonas aeruginosa/genetics , Young Adult
14.
Appl Environ Microbiol ; 80(18): 5723-31, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25015884

ABSTRACT

Pyoverdine is a fluorescent nonribosomal peptide siderophore made by fluorescent pseudomonads. The Pseudomonas aeruginosa nonribosomal peptide synthetase (NRPS) PvdD contains two modules that each incorporate an l-threonine residue at the C-terminal end of pyoverdine. In an attempt to generate modified pyoverdine peptides, we substituted alternative-substrate-specifying adenylation (A) and peptide bond-catalyzing condensation (C) domains into the second module of PvdD. When just the A domain was substituted, the resulting strains produced only wild-type pyoverdine-at high levels if the introduced A domain specified threonine or at trace levels otherwise. The high levels of pyoverdine synthesis observed whenever the introduced A domain specified threonine indicated that these nonnative A domains were able to communicate effectively with the PvdD C domain. Moreover, the unexpected observation that non-threonine-specifying A domains nevertheless incorporated threonine into pyoverdine suggests that the native PvdD C domain exhibited stronger selectivity than these A domains for the incorporated amino acid substrate (i.e., misactivation of a threonine residue by the introduced A domains was more frequent than misincorporation of a nonthreonine residue by the PvdD C domain). In contrast, substitution of both the C and A domains of PvdD generated high yields of rationally modified pyoverdines in two instances, these pyoverdines having either a lysine or a serine residue in place of the terminal threonine. However, C-A domain substitution more commonly yielded a truncated peptide product, likely due to stalling of synthesis on a nonfunctional recombinant NRPS template.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Oligopeptides/biosynthesis , Peptide Synthases/genetics , Peptide Synthases/metabolism , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/metabolism , Oligopeptides/chemistry , Protein Structure, Tertiary , Pseudomonas aeruginosa/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Threonine/metabolism
15.
BMC Microbiol ; 14: 287, 2014 Nov 30.
Article in English | MEDLINE | ID: mdl-25433393

ABSTRACT

BACKGROUND: Synthesis and uptake of pyoverdine, the primary siderophore of the opportunistic pathogen Pseudomonas aeruginosa, is dependent on two extra-cytoplasmic function (ECF) sigma factors, FpvI and PvdS. FpvI and PvdS are required for expression of the ferri-pyoverdine receptor gene fpvA and of pyoverdine synthesis genes respectively. In the absence of pyoverdine the anti-sigma factor FpvR that spans the cytoplasmic membrane inhibits the activities of both FpvI and PvdS, despite the two sigma factors having low sequence identity. RESULTS: To investigate the interactions of FpvR with FpvI and PvdS, we first used a tandem affinity purification system to demonstrate binding of PvdS by the cytoplasmic region of FpvR in P. aeruginosa at physiological levels. The cytoplasmic region of FpvR bound to and inhibited both FpvI and PvdS when the proteins were co-expressed in Escherichia coli. Each sigma factor was then subjected to error prone PCR and site-directed mutagenesis to identify mutations that increased sigma factor activity in the presence of FpvR. In FpvI, the amino acid changes clustered around conserved region four of the protein and are likely to disrupt interactions with FpvR. Deletion of five amino acids from the C-terminal end of FpvI also disrupted interactions with FpvR. Mutations in PvdS were present in conserved regions two and four. Most of these mutations as well as deletion of thirteen amino acids from the C-terminal end of PvdS increased sigma factor activity independent of whether FpvR was present, suggesting that they increase either the stability of PvdS or its affinity for core RNA polymerase. CONCLUSIONS: These data show that FpvR binds to PvdS in both P. aeruginosa and E. coli, inhibiting its activity. FpvR also binds to and inhibits FpvI and binding of FpvI is likely to involve conserved region four of the sigma factor protein.


Subject(s)
Gene Expression Regulation, Bacterial , Oligopeptides/metabolism , Pseudomonas aeruginosa/physiology , Sigma Factor/antagonists & inhibitors , Sigma Factor/metabolism , Signal Transduction , DNA Mutational Analysis , Mutagenesis, Site-Directed , Protein Binding , Protein Interaction Mapping , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Sequence Deletion
16.
Front Cell Infect Microbiol ; 14: 1352339, 2024.
Article in English | MEDLINE | ID: mdl-38808066

ABSTRACT

Antibiotic drug combination therapy is critical for the successful treatment of infections caused by multidrug resistant pathogens. We investigated the efficacy of ß-lactam and ß-lactam/ß-lactamase inhibitor combinations with other antibiotics, against the hypervirulent, ceftazidime/avibactam resistant Pseudomonas aeruginosa Liverpool epidemic strain (LES) B58. Although minimum inhibitory concentrations in vitro differed by up to eighty-fold between standard and host-mimicking media, combinatorial effects only marginally changed between conditions for some combinations. Effective combinations in vitro were further tested in a chronic, high-density murine infection model. Colistin and azithromycin demonstrated combinatorial effects with ceftazidime and ceftazidime/avibactam both in vitro and in vivo. Conversely, while tobramycin and tigecycline exhibited strong synergy in vitro, this effect was not observed in vivo. Our approach of using host-mimicking conditions and a sophisticated animal model to evaluate drug synergy against bacterial pathogens represents a promising approach. This methodology may offer insights into the prediction of combination therapy outcomes and the identification of potential treatment failures.


Subject(s)
Abscess , Anti-Bacterial Agents , Disease Models, Animal , Drug Synergism , Drug Therapy, Combination , Microbial Sensitivity Tests , Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Mice , Abscess/drug therapy , Abscess/microbiology , Drug Combinations , Drug Resistance, Multiple, Bacterial , Female , Ceftazidime/pharmacology , Ceftazidime/therapeutic use , Azithromycin/pharmacology , Azithromycin/therapeutic use , Azithromycin/administration & dosage , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Colistin/pharmacology , Colistin/therapeutic use , Colistin/administration & dosage
17.
Infect Immun ; 81(8): 2697-704, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23690396

ABSTRACT

Pseudomonas aeruginosa chronically infects the lungs of more than 80% of adult patients with cystic fibrosis (CF) and is a major contributor to the progression of disease pathology. P. aeruginosa requires iron for growth and has multiple iron uptake systems that have been studied in bacteria grown in laboratory culture. The purpose of this research was to determine which of these are active during infection in CF. RNA was extracted from 149 sputum samples obtained from 23 CF patients. Reverse transcription-quantitative real-time PCR (RT-qPCR) was used to measure the expression of P. aeruginosa genes encoding transport systems for the siderophores pyoverdine and pyochelin, for heme, and for ferrous ions. Expression of P. aeruginosa genes could be quantified in 89% of the sputum samples. Expression of genes associated with siderophore-mediated iron uptake was detected in most samples but was at low levels in some samples, indicating that other iron uptake mechanisms are active. Expression of genes encoding heme transport systems was also detected in most samples, indicating that heme uptake occurs during infection in CF. feoB expression was detected in all sputum samples, implying an important role for ferrous ion uptake by P. aeruginosa in CF. Our data show that multiple P. aeruginosa iron uptake mechanisms are active in chronic CF infection and that RT-qPCR of RNA extracted from sputum provides a powerful tool for investigating bacterial physiology during infection in CF.


Subject(s)
Cystic Fibrosis/microbiology , Iron/metabolism , Pseudomonas Infections/metabolism , Pseudomonas aeruginosa/metabolism , RNA, Bacterial/analysis , Adult , Cation Transport Proteins/analysis , Cation Transport Proteins/biosynthesis , Chronic Disease , Escherichia coli Proteins/analysis , Escherichia coli Proteins/biosynthesis , Female , Humans , Male , Real-Time Polymerase Chain Reaction , Respiratory Tract Infections/microbiology , Reverse Transcriptase Polymerase Chain Reaction , Siderophores/analysis , Siderophores/biosynthesis , Sputum/chemistry , Young Adult
18.
Eur Respir J ; 42(6): 1723-36, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23143541

ABSTRACT

The aerobic Gram-negative bacterium Pseudomonas aeruginosa is an opportunistic pathogen responsible for life-threatening acute and chronic infections in humans. As part of chronic infection P. aeruginosa forms biofilms, which shield the encased bacteria from host immune clearance and provide an impermeable and protective barrier against currently available antimicrobial agents. P. aeruginosa has an absolute requirement for iron for infection success. By influencing cell-cell communication (quorum sensing) and virulence factor expression, iron is a powerful regulator of P. aeruginosa behaviour. Consequently, the imposed perturbation of iron acquisition systems has been proposed as a novel therapeutic approach to the treatment of P. aeruginosa biofilm infection. In this review, we explore the influence of iron availability on P. aeruginosa infection in the lungs of the people with the autosomal recessive condition cystic fibrosis as an archetypal model of chronic P. aeruginosa biofilm infection. Novel therapeutics aimed at disrupting P. aeruginosa are discussed, with an emphasis placed on identifying the barriers that need to be overcome in order to translate these promising in vitro agents into effective therapies in human pulmonary infections.


Subject(s)
Cystic Fibrosis/complications , Cystic Fibrosis/microbiology , Iron/pharmacokinetics , Pseudomonas Infections/prevention & control , Pseudomonas aeruginosa , Anti-Infective Agents/therapeutic use , Biofilms , Chelating Agents/chemistry , Gene Expression Regulation, Bacterial , Homeostasis , Humans , Iron/chemistry , Lactoferrin/chemistry , Lung/microbiology , Pseudomonas Infections/microbiology , Quorum Sensing/genetics , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/prevention & control , Thiocyanates/chemistry
19.
Antibiotics (Basel) ; 12(1)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36671353

ABSTRACT

Pseudomonas aeruginosa causes a wide range of acute and chronic infections. Aminoglycosides are a cornerstone of treatment, but isolates are often resistant. The purpose of this research was to better understand the genetic basis of aminoglycoside resistance in P. aeruginosa. Bioinformatic approaches identified mutations in resistance-associated genes in the clinical isolates of P. aeruginosa. The common mutations were then engineered into the genome of P. aeruginosa reference strain PAO1. Mutations in the elongation factor gene fusA1 caused the biggest reduction in aminoglycoside susceptibility, with mutations in the two-component regulator gene amgS and the efflux pump regulator gene mexZ having less impact. This susceptibility was further reduced by combinations of mutations. Mutations in fusA1, amgS and mexZ all increased the expression of the mexXY efflux pump that is strongly associated with aminoglycoside resistance. Furthermore, the fusA1 amgS mexZ triple mutant had the highest efflux pump gene expression. Engineering fusA1 and amgS mutants lacking this efflux pump showed that fusA1 and amgS also reduce aminoglycoside susceptibility through additional mechanisms. The fusA1 and amgS mutations reduced bacterial growth, showing that these mutations have a fitness cost. Our findings demonstrate the complex interplay between mutations, efflux pump expression and other mechanisms for reducing the susceptibility of P. aeruginosa to aminoglycosides.

20.
PLoS One ; 18(10): e0292818, 2023.
Article in English | MEDLINE | ID: mdl-37824582

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen that causes a wide range of problematic infections in individuals with predisposing conditions. Infections can be treated with colistin but some isolates are resistant to this antibiotic. To better understand the genetic basis of resistance, we experimentally evolved 19 independent resistant mutants from the susceptible laboratory strain PAO1. Whole genome sequencing identified mutations in multiple genes including phoQ and pmrB that have previously been associated with resistance, pitA that encodes a phosphate transporter, and carB and eno that encode enzymes of metabolism. Individual mutations were engineered into the genome of strain PAO1. Mutations in pitA, pmrB and phoQ increased the minimum inhibitory concentration (MIC) for colistin 8-fold, making the bacteria resistant. Engineered pitA/phoQ and pitA/pmrB double mutants had higher MICs than single mutants, demonstrating additive effects on colistin susceptibility. Single carB and eno mutations did not increase the MIC suggesting that their effect is dependent on the presence of other mutations. Many of the resistant mutants had increased susceptibility to ß-lactams and lower growth rates than the parental strain demonstrating that colistin resistance can impose a fitness cost. Two hundred and fourteen P. aeruginosa isolates from a range of sources were tested and 18 (7.8%) were colistin resistant. Sequence variants in genes identified by experimental evolution were present in the 18 resistant isolates and may contribute to resistance. Overall our results identify pitA mutations as novel contributors to colistin resistance and demonstrate that resistance can reduce fitness of the bacteria.


Subject(s)
Colistin , Pseudomonas aeruginosa , Humans , Colistin/pharmacology , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL