Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
PLoS Genet ; 19(5): e1010750, 2023 05.
Article in English | MEDLINE | ID: mdl-37186613

ABSTRACT

Curli amyloid fibers are a major constituent of the extracellular biofilm matrix formed by bacteria of the Enterobacteriaceae family. Within Escherichia coli biofilms, curli gene expression is limited to a subpopulation of bacteria, leading to heterogeneity of extracellular matrix synthesis. Here we show that bimodal activation of curli gene expression also occurs in well-mixed planktonic cultures of E. coli, resulting in all-or-none stochastic differentiation into distinct subpopulations of curli-positive and curli-negative cells at the entry into the stationary phase of growth. Stochastic curli activation in individual E. coli cells could further be observed during continuous growth in a conditioned medium in a microfluidic device, which further revealed that the curli-positive state is only metastable. In agreement with previous reports, regulation of curli gene expression by the second messenger c-di-GMP via two pairs of diguanylate cyclase and phosphodiesterase enzymes, DgcE/PdeH and DgcM/PdeR, modulates the fraction of curli-positive cells. Unexpectedly, removal of this regulatory network does not abolish the bimodality of curli gene expression, although it affects dynamics of activation and increases heterogeneity of expression levels among individual cells. Moreover, the fraction of curli-positive cells within an E. coli population shows stronger dependence on growth conditions in the absence of regulation by DgcE/PdeH and DgcM/PdeR pairs. We thus conclude that, while not required for the emergence of bimodal curli gene expression in E. coli, this c-di-GMP regulatory network attenuates the frequency and dynamics of gene activation and increases its robustness to cellular heterogeneity and environmental variation.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/metabolism , Transcriptional Activation , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Cyclic GMP/genetics , Cyclic GMP/metabolism , Second Messenger Systems , Biofilms , Gene Expression Regulation, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
2.
Science ; 384(6700): eadh8697, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843327

ABSTRACT

After antigen stimulation, naïve T cells display reproducible population-level responses, which arise from individual T cells pursuing specific differentiation trajectories. However, cell-intrinsic predeterminants controlling these single-cell decisions remain enigmatic. We found that the subcellular architectures of naïve CD8 T cells, defined by the presence (TØ) or absence (TO) of nuclear envelope invaginations, changed with maturation, activation, and differentiation. Upon T cell receptor (TCR) stimulation, naïve TØ cells displayed increased expression of the early-response gene Nr4a1, dependent upon heightened calcium entry. Subsequently, in vitro differentiation revealed that TØ cells generated effector-like cells more so compared with TO cells, which proliferated less and preferentially adopted a memory-precursor phenotype. These data suggest that cellular architecture may be a predeterminant of naïve CD8 T cell fate.


Subject(s)
CD8-Positive T-Lymphocytes , Nuclear Receptor Subfamily 4, Group A, Member 1 , Receptors, Antigen, T-Cell , Animals , Mice , Calcium/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/ultrastructure , Cell Differentiation , Immunologic Memory , Lymphocyte Activation , Mice, Inbred C57BL , Nuclear Envelope/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Microscopy, Fluorescence , Fluorescent Antibody Technique , Humans
3.
NPJ Biofilms Microbiomes ; 8(1): 61, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35869094

ABSTRACT

Phototrophic biofilms, also known as periphyton, are microbial freshwater communities that drive crucial ecological processes in streams and lakes. Gaining a deep mechanistic understanding of the biological processes occurring in natural periphyton remains challenging due to the high complexity and variability of such communities. To address this challenge, we rationally developed a workflow to construct a synthetic community by co-culturing 26 phototrophic species (i.e., diatoms, green algae, and cyanobacteria) that were inoculated in a successional sequence to create a periphytic biofilm on glass slides. We show that this community is diverse, stable, and highly reproducible in terms of microbial composition, function, and 3D spatial structure of the biofilm. We also demonstrate the ability to monitor microbial dynamics at the single species level during periphyton development and how their abundances are impacted by stressors such as increased temperature and a herbicide, singly and in combination. Overall, such a synthetic periphyton, grown under controlled conditions, can be used as a model system for theory testing through targeted manipulation.


Subject(s)
Cyanobacteria , Diatoms , Herbicides , Periphyton , Fresh Water/chemistry
4.
Nat Microbiol ; 6(2): 151-156, 2021 02.
Article in English | MEDLINE | ID: mdl-33398098

ABSTRACT

Biofilms are microbial communities that represent a highly abundant form of microbial life on Earth. Inside biofilms, phenotypic and genotypic variations occur in three-dimensional space and time; microscopy and quantitative image analysis are therefore crucial for elucidating their functions. Here, we present BiofilmQ-a comprehensive image cytometry software tool for the automated and high-throughput quantification, analysis and visualization of numerous biofilm-internal and whole-biofilm properties in three-dimensional space and time.


Subject(s)
Biofilms , Image Cytometry/methods , Imaging, Three-Dimensional/methods , Microbiota , Software , Bacteria/cytology , Bacteria/genetics , Bacteria/growth & development , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL