Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 320
Filter
Add more filters

Publication year range
1.
Nat Rev Mol Cell Biol ; 23(8): 521-540, 2022 08.
Article in English | MEDLINE | ID: mdl-35459910

ABSTRACT

RNA-DNA hybrids are generated during transcription, DNA replication and DNA repair and are crucial intermediates in these processes. When RNA-DNA hybrids are stably formed in double-stranded DNA, they displace one of the DNA strands and give rise to a three-stranded structure called an R-loop. R-loops are widespread in the genome and are enriched at active genes. R-loops have important roles in regulating gene expression and chromatin structure, but they also pose a threat to genomic stability, especially during DNA replication. To keep the genome stable, cells have evolved a slew of mechanisms to prevent aberrant R-loop accumulation. Although R-loops can cause DNA damage, they are also induced by DNA damage and act as key intermediates in DNA repair such as in transcription-coupled repair and RNA-templated DNA break repair. When the regulation of R-loops goes awry, pathological R-loops accumulate, which contributes to diseases such as neurodegeneration and cancer. In this Review, we discuss the current understanding of the sources of R-loops and RNA-DNA hybrids, mechanisms that suppress and resolve these structures, the impact of these structures on DNA repair and genome stability, and opportunities to therapeutically target pathological R-loops.


Subject(s)
R-Loop Structures , RNA , DNA/chemistry , DNA Repair , Genomic Instability , Humans , RNA/metabolism
2.
Genes Dev ; 37(19-20): 929-943, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37932012

ABSTRACT

The mismatch repair (MMR) deficiency of cancer cells drives mutagenesis and offers a useful biomarker for immunotherapy. However, many MMR-deficient (MMR-d) tumors do not respond to immunotherapy, highlighting the need for alternative approaches to target MMR-d cancer cells. Here, we show that inhibition of the ATR kinase preferentially kills MMR-d cancer cells. Mechanistically, ATR inhibitor (ATRi) imposes synthetic lethality on MMR-d cells by inducing DNA damage in a replication- and MUS81 nuclease-dependent manner. The DNA damage induced by ATRi is colocalized with both MSH2 and PCNA, suggesting that it arises from DNA structures recognized by MMR proteins during replication. In syngeneic mouse models, ATRi effectively reduces the growth of MMR-d tumors. Interestingly, the antitumor effects of ATRi are partially due to CD8+ T cells. In MMR-d cells, ATRi stimulates the accumulation of nascent DNA fragments in the cytoplasm, activating the cGAS-mediated interferon response. The combination of ATRi and anti-PD-1 antibody reduces the growth of MMR-d tumors more efficiently than ATRi or anti-PD-1 alone, showing the ability of ATRi to augment the immunotherapy of MMR-d tumors. Thus, ATRi selectively targets MMR-d tumor cells by inducing synthetic lethality and enhancing antitumor immunity, providing a promising strategy to complement and augment MMR deficiency-guided immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , DNA Mismatch Repair , Animals , Mice , DNA Mismatch Repair/genetics , Synthetic Lethal Mutations , DNA , Immunotherapy
3.
Genes Dev ; 36(5-6): 278-293, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35318271

ABSTRACT

DNA repair and DNA damage signaling pathways are critical for the maintenance of genomic stability. Defects of DNA repair and damage signaling contribute to tumorigenesis, but also render cancer cells vulnerable to DNA damage and reliant on remaining repair and signaling activities. Here, we review the major classes of DNA repair and damage signaling defects in cancer, the genomic instability that they give rise to, and therapeutic strategies to exploit the resulting vulnerabilities. Furthermore, we discuss the impacts of DNA repair defects on both targeted therapy and immunotherapy, and highlight emerging principles for targeting DNA repair defects in cancer therapy.


Subject(s)
DNA Repair , Neoplasms , DNA Damage/genetics , DNA Repair/genetics , Genomic Instability/genetics , Humans , Immunotherapy , Neoplasms/drug therapy , Neoplasms/therapy
5.
Mol Cell ; 81(5): 1027-1042.e4, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33453166

ABSTRACT

Alternative lengthening of telomeres (ALT) is mediated by break-induced replication (BIR), but how BIR is regulated at telomeres is poorly understood. Here, we show that telomeric BIR is a self-perpetuating process. By tethering PML-IV to telomeres, we induced telomere clustering in ALT-associated PML bodies (APBs) and a POLD3-dependent ATR response at telomeres, showing that BIR generates replication stress. Ablation of BLM helicase activity in APBs abolishes telomere synthesis but causes multiple chromosome bridges between telomeres, revealing a function of BLM in processing inter-telomere BIR intermediates. Interestingly, the accumulation of BLM in APBs requires its own helicase activity and POLD3, suggesting that BIR triggers a feedforward loop to further recruit BLM. Enhancing BIR induces PIAS4-mediated TRF2 SUMOylation, and PIAS4 loss deprives APBs of repair proteins and compromises ALT telomere synthesis. Thus, a BLM-driven and PIAS4-mediated feedforward loop operates in APBs to perpetuate BIR, providing a critical mechanism to extend ALT telomeres.


Subject(s)
Fanconi Anemia Complementation Group Proteins/genetics , Feedback, Physiological , Poly-ADP-Ribose Binding Proteins/genetics , Protein Inhibitors of Activated STAT/genetics , RNA Helicases/genetics , Telomere Homeostasis , Telomere/chemistry , Telomeric Repeat Binding Protein 2/metabolism , Cell Line , Cell Line, Tumor , DNA Polymerase III/genetics , DNA Polymerase III/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Fanconi Anemia Complementation Group Proteins/antagonists & inhibitors , Fanconi Anemia Complementation Group Proteins/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Intranuclear Inclusion Bodies/genetics , Intranuclear Inclusion Bodies/metabolism , Poly-ADP-Ribose Binding Proteins/antagonists & inhibitors , Poly-ADP-Ribose Binding Proteins/metabolism , Protein Inhibitors of Activated STAT/antagonists & inhibitors , Protein Inhibitors of Activated STAT/metabolism , RNA Helicases/antagonists & inhibitors , RNA Helicases/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , RecQ Helicases/genetics , RecQ Helicases/metabolism , Signal Transduction , Sumoylation , Telomere/metabolism , Telomeric Repeat Binding Protein 2/genetics
6.
Nature ; 594(7862): 283-288, 2021 06.
Article in English | MEDLINE | ID: mdl-33981036

ABSTRACT

Homologous recombination (HR) repairs DNA double-strand breaks (DSBs) in the S and G2 phases of the cell cycle1-3. Several HR proteins are preferentially recruited to DSBs at transcriptionally active loci4-10, but how transcription promotes HR is poorly understood. Here we develop an assay to assess the effect of local transcription on HR. Using this assay, we find that transcription stimulates HR to a substantial extent. Tethering RNA transcripts to the vicinity of DSBs recapitulates the effects of local transcription, which suggests that transcription enhances HR through RNA transcripts. Tethered RNA transcripts stimulate HR in a sequence- and orientation-dependent manner, indicating that they function by forming DNA-RNA hybrids. In contrast to most HR proteins, RAD51-associated protein 1 (RAD51AP1) only promotes HR when local transcription is active. RAD51AP1 drives the formation of R-loops in vitro and is required for tethered RNAs to stimulate HR in cells. Notably, RAD51AP1 is necessary for the DSB-induced formation of DNA-RNA hybrids in donor DNA, linking R-loops to D-loops. In vitro, RAD51AP1-generated R-loops enhance the RAD51-mediated formation of D-loops locally and give rise to intermediates that we term 'DR-loops', which contain both DNA-DNA and DNA-RNA hybrids and favour RAD51 function. Thus, at DSBs in transcribed regions, RAD51AP1 promotes the invasion of RNA transcripts into donor DNA, and stimulates HR through the formation of DR-loops.


Subject(s)
DNA/genetics , DNA/metabolism , Homologous Recombination/genetics , R-Loop Structures/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Line , DNA/chemistry , DNA Breaks, Double-Stranded , DNA Repair , DNA-Binding Proteins/metabolism , Genes/genetics , Genes, Reporter/genetics , Green Fluorescent Proteins/genetics , Humans , In Vitro Techniques , RNA, Messenger/chemistry , RNA-Binding Proteins/metabolism , Rad51 Recombinase/metabolism
7.
Genes Dev ; 33(1-2): 75-89, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30567999

ABSTRACT

Numerous DNA repair and signaling proteins function at DNA damage sites to protect the genome. Here, we show that fusion of the promiscuous biotin ligase BirAR118G with RAD18 leads to localized protein biotinylation at DNA damage sites, allowing identification of ZPET (zinc finger protein proximal to RAD eighteen)/ZNF280C as a potential DNA damage response (DDR) protein. ZPET binds ssDNA and localizes to DNA double-strand breaks (DSBs) and stalled replication forks. In vitro, ZPET inhibits MRE11 binding to ssDNA. In cells, ZPET delays MRE11 binding to chromatin after DSB formation and slows DNA end resection through binding ssDNA. ZPET hinders resection independently of 53BP1 and HELB. Cells lacking ZPET displayed enhanced homologous recombination (HR), accelerated replication forks under stress, and increased resistance to DSBs and PARP inhibition. These results not only reveal ZPET as an HR repressor but also suggest that localized protein biotinylation at DNA damage sites is a useful strategy to identify DDR proteins.


Subject(s)
Biotinylation/methods , DNA Damage , DNA Repair/genetics , DNA-Binding Proteins/metabolism , Homologous Recombination/genetics , Transcription Factors/metabolism , Carbon-Nitrogen Ligases/genetics , Cell Line , DNA Breaks, Double-Stranded , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/genetics , Escherichia coli Proteins/genetics , Gene Knockdown Techniques , Humans , MRE11 Homologue Protein/metabolism , Protein Binding , Protein Transport/genetics , Repressor Proteins/genetics , Transcription Factors/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
8.
Mol Cell ; 65(5): 818-831.e5, 2017 Mar 02.
Article in English | MEDLINE | ID: mdl-28216227

ABSTRACT

Telomeric repeat binding factor 1 (TRF1) is essential to the maintenance of telomere chromatin structure and integrity. However, how telomere integrity is maintained, especially in response to damage, remains poorly understood. Here, we identify Nek7, a member of the Never in Mitosis Gene A (NIMA) kinase family, as a regulator of telomere integrity. Nek7 is recruited to telomeres and stabilizes TRF1 at telomeres after damage in an ATM activation-dependent manner. Nek7 deficiency leads to telomere aberrations, long-lasting γH2AX and 53BP1 foci, and augmented cell death upon oxidative telomeric DNA damage. Mechanistically, Nek7 interacts with and phosphorylates TRF1 on Ser114, which prevents TRF1 from binding to Fbx4, an Skp1-Cul1-F box E3 ligase subunit, thereby alleviating proteasomal degradation of TRF1, leading to a stable association of TRF1 with Tin2 to form a shelterin complex. Our data reveal a mechanism of efficient protection of telomeres from damage through Nek7-dependent stabilization of TRF1.


Subject(s)
DNA Damage , NIMA-Related Kinases/metabolism , Oxidative Stress , Telomere-Binding Proteins/metabolism , Telomere/enzymology , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Binding Sites , F-Box Proteins/genetics , F-Box Proteins/metabolism , HEK293 Cells , HeLa Cells , Histones/metabolism , Humans , NIMA-Related Kinases/genetics , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Protein Stability , RNA Interference , Shelterin Complex , Telomere/genetics , Telomere/radiation effects , Telomere-Binding Proteins/genetics , Time Factors , Transfection , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism , Ubiquitination
9.
Proc Natl Acad Sci U S A ; 119(12): e2116251119, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35290126

ABSTRACT

RNA modifications regulate a variety of cellular processes including DNA repair.The RNA methyltransferase TRDMT1 generates methyl-5-cytosine (m5C) on messen-ger RNA (mRNA) at DNA double-strand breaks (DSBs) in transcribed regions, pro-moting transcription-coupled homologous recombination (HR). Here, we identifiedthat Fragile X mental retardation protein (FMRP) promotes transcription-coupled HRvia its interaction with both the m5C writer TRDMT1 and the m5C eraser ten-eleventranslocation protein 1 (TET1). TRDMT1, FMRP, and TET1 function in a temporalorder at the transcriptionally active sites of DSBs. FMRP displays a higher affinity forDNA:RNA hybrids containing m5C-modified RNA than for hybrids without modifica-tion and facilitates demethylation of m5C by TET1 in vitro. Loss of either the chroma-tin- or RNA-binding domain of FMRP compromises demethylation of damage-inducedm5C in cells. Importantly, FMRP is required for R-loop resolving in cells. Due to unre-solved R-loop and m5C preventing completion of DSB repair, FMRP depletion or lowexpression leads to delayed repair of DSBs at transcriptionally active sites and sensitizescancer cells to radiation in a BRCA-independent manner. Together, ourfindings presentan m5C reader, FMRP, which acts as a coordinator between the m5C writer and eraserto promote mRNA-dependent repair and cell survival in cancer.


Subject(s)
Fragile X Mental Retardation Protein , Fragile X Syndrome , Cytosine , Demethylation , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/genetics , Homologous Recombination , Humans , Mixed Function Oxygenases/metabolism , Proto-Oncogene Proteins/metabolism , RNA/genetics , RNA/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
10.
Med Res Rev ; 44(2): 686-706, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37983866

ABSTRACT

Cancer continues to be a major health concern globally, although the advent of targeted therapy has revolutionized treatment options. Aurora Kinase B is a serine-threonine kinase that has been explored as an oncology therapeutic target for more than two decades. Aurora Kinase B inhibitors show promising biological results in in-vitro and in-vivo experiments. However, there are no inhibitors approved yet for clinical use, primarily because of the side effects associated with Aurora B inhibitors. Several studies demonstrate that Aurora B inhibitors show excellent synergy with various chemotherapeutic agents, radiation therapy, and targeted therapies. This makes it an excellent choice as an adjuvant therapy to first-line therapies, which greatly improves the therapeutic window and side effect profile. Recent studies indicate the role of Aurora B in some deadly cancers with limited therapeutic options, like triple-negative breast cancer and glioblastoma. Herein, we review the latest developments in Aurora Kinase B targeted research, with emphasis on its potential as an adjuvant therapy and its role in some of the most difficult-to-treat cancers.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Aurora Kinase B/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/therapeutic use , Neoplasms/drug therapy , Aurora Kinase A/therapeutic use , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
11.
New Phytol ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898642

ABSTRACT

Drought-induced xylem embolism is a primary cause of plant mortality. Although c. 70% of cycads are threatened by extinction and extant cycads diversified during a period of increasing aridification, the vulnerability of cycads to embolism spread has been overlooked. We quantified the vulnerability to drought-induced embolism, pressure-volume curves, in situ water potentials, and a suite of xylem anatomical traits of leaf pinnae and rachises for 20 cycad species. We tested whether anatomical traits were linked to hydraulic safety in cycads. Compared with other major vascular plant clades, cycads exhibited similar embolism resistance to angiosperms and pteridophytes but were more vulnerable to embolism than noncycad gymnosperms. All 20 cycads had both tracheids and vessels, the proportions of which were unrelated to embolism resistance. Only vessel pit membrane fraction was positively correlated to embolism resistance, contrary to angiosperms. Water potential at turgor loss was significantly correlated to embolism resistance among cycads. Our results show that cycads exhibit low resistance to xylem embolism and that xylem anatomical traits - particularly vessels - may influence embolism resistance together with tracheids. This study highlights the importance of understanding the mechanisms of drought resistance in evolutionarily unique and threatened lineages like the cycads.

12.
Virol J ; 21(1): 4, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38178220

ABSTRACT

BACKGROUND: Cross-species transmission of zoonotic IAVs to humans is potentially widespread and lethal, posing a great threat to human health, and their cross-species transmission mechanism has attracted much attention. miRNAs have been shown to be involved in the regulation of IAVs infection and immunity, however, few studies have focused on the molecular mechanisms underlying miRNAs and mRNAs expression after IAVs cross-species infection. METHODS: We used tree shrews, a close relative of primates, as a model and used RNA-Seq and bioinformatics tools to analyze the expression profiles of DEMs and DEGs in the nasal turbinate tissue at different time points after the newly emerged swine influenza A virus SW2783 cross-species infection with tree shrews, and miRNA-mRNA interaction maps were constructed and verified by RT-qPCR, miRNA transfection and luciferase reporter assay. RESULTS: 14 DEMs were screened based on functional analysis and interaction map, miR-760-3p, miR-449b-2, miR-30e-3p, and miR-429 were involved in the signal transduction process of replication and proliferation after infection, miR-324-3p, miR-1301-1, miR-103-1, miR-134-5p, miR-29a, miR-31, miR-16b, miR-34a, and miR-125b participate in negative feedback regulation of genes related to the immune function of the body to activate the antiviral immune response, and miR-106b-3p may be related to the cross-species infection potential of SW2783, and the expression level of these miRNAs varies in different days after infection. CONCLUSIONS: The miRNA regulatory networks were constructed and 14 DEMs were identified, some of them can affect the replication and proliferation of viruses by regulating signal transduction, while others can play an antiviral role by regulating the immune response. It indicates that abnormal expression of miRNAs plays a crucial role in the regulation of cross-species IAVs infection, which lays a solid foundation for further exploration of the molecular regulatory mechanism of miRNAs in IAVs cross-species infection and anti-influenza virus targets.


Subject(s)
MicroRNAs , Animals , Humans , Swine , MicroRNAs/genetics , MicroRNAs/metabolism , Influenza A Virus, H3N2 Subtype/genetics , Tupaia , Gene Expression Profiling , Tupaiidae/genetics , Shrews , RNA, Messenger
13.
Physiol Plant ; 175(3): e13924, 2023.
Article in English | MEDLINE | ID: mdl-37158623

ABSTRACT

Interconduit pit membranes, which are permeable regions in the primary cell wall that connect to adjacent conduits, play a crucial role in water relations and the movement of nutrients between xylem conduits. However, how pit membrane characteristics might influence water-carbon coupling remains poorly investigated in cycads. We examined pit characteristics, the anatomical and photosynthetic traits of 13 cycads from a common garden, to determine if pit traits and their coordination are related to water relations and carbon economy. We found that the pit traits of cycads were highly variable and that cycads exhibited a similar tradeoff between pit density and pit area as other plant lineages. Unlike other plant lineages (1) pit membranes, pit apertures, and pit shapes of cycads were not coordinated as in angiosperms; (2) cycads exhibited larger pit membrane areas but lower pit densities relative to ferns and angiosperms, but smaller and similar pit membrane densities to non-cycad gymnosperms; (3) cycad pit membrane areas and densities were partially coordinated with anatomical traits, with hydraulic supply of the rachis positively coordinated with photosynthesis, whereas pit aperture areas and fractions were negatively coordinated with photosynthetic traits; (4) cycad pit traits reflected adaptation to wetter habitats for Cycadaceae and drier habitats for Zamiaceae. The large variation in pit traits, the unique pit membrane size and density, and the partial coordination of pit traits with anatomical and physiological traits of the rachis and pinna among cycads may have facilitated their dominance in a variety of ecosystems from the Mesozoic to modern times.


Subject(s)
Cycadopsida , Ecosystem , Cycadopsida/metabolism , Photosynthesis , Plants/metabolism , Water/metabolism , Carbon
14.
Bioorg Med Chem ; 87: 117298, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37196426

ABSTRACT

Aberrant FGF19/FGFR4 signaling has been demonstrated to be an oncogenic driver of growth and survival in human hepatocellular carcinoma (HCC). At present, the development of FGFR4-specific drugs has become a hotspot in tumor-targeted therapy research. However, no selective FGFR4 inhibitors have been approved by FDA so far. Currently, most of the reported FGFR4 inhibitors that use a covalent targeting strategy to be selective are typical type I inhibitors with a single type. Here, based on Ponatinib, we designed and synthesized a series of arylurea derivatives as novel type II irreversible covalent inhibitors of FGFR4. Among them, the representative compound 6v exhibited an IC50 value of 74 nM against FGFR4 and antiproliferative potency of 0.25 µM and 0.22 µM against Huh7 and Hep3B cell lines. Western blotting results showed that compound 6v significantly inhibited the phosphorylation of FGFR4 and its downstream signaling factors AKT and ERK in a dose-dependent manner in Hep3B cell. These results showed that this series of compounds, as type II irreversible FGFR4 inhibitors, are worthy of further research and structural optimization.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation , Receptor, Fibroblast Growth Factor, Type 4/metabolism
15.
Mol Cell ; 58(1): 172-85, 2015 Apr 02.
Article in English | MEDLINE | ID: mdl-25818648

ABSTRACT

Nonhomologous end-joining (NHEJ) is a major DNA double-strand break repair pathway that is conserved in eukaryotes. In vertebrates, NHEJ further acquires end-processing capacities (e.g., hairpin opening) in addition to direct end-ligation. The catalytic subunit of DNA-PK (DNA-PKcs) is a vertebrate-specific NHEJ factor that can be autophosphorylated or transphosphorylated by ATM kinase. Using a mouse model expressing a kinase-dead (KD) DNA-PKcs protein, we show that ATM-mediated transphosphorylation of DNA-PKcs regulates end-processing at the level of Artemis recruitment, while strict autophosphorylation of DNA-PKcs is necessary to relieve the physical blockage on end-ligation imposed by the DNA-PKcs protein itself. Accordingly, DNA-PKcs(KD/KD) mice and cells show severe end-ligation defects and p53- and Ku-dependent embryonic lethality, but open hairpin-sealed ends normally in the presence of ATM kinase activity. Together, our findings identify DNA-PKcs as the molecular switch that coordinates end-processing and end-ligation at the DNA ends through differential phosphorylations.


Subject(s)
B-Lymphocytes/metabolism , DNA End-Joining Repair/genetics , DNA-Activated Protein Kinase/genetics , DNA-Binding Proteins/genetics , Endonucleases/genetics , Nuclear Proteins/genetics , Animals , Antigens, Nuclear/genetics , Antigens, Nuclear/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , B-Lymphocytes/cytology , Cell Line , DNA Breaks, Double-Stranded , DNA-Activated Protein Kinase/metabolism , DNA-Binding Proteins/metabolism , Endonucleases/metabolism , Female , Gene Expression Regulation , Ku Autoantigen , Male , Mice , Mice, Transgenic , Nuclear Proteins/metabolism , Phosphorylation , Signal Transduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
16.
Am J Primatol ; 85(4): e23468, 2023 04.
Article in English | MEDLINE | ID: mdl-36691713

ABSTRACT

The gut microbiota plays an integral role in the metabolism and immunity of animal hosts, and provides insights into the health and habitat assessment of threatened animals. The skywalker hoolock gibbon (Hoolock tianxing) is a newly described gibbon species, and is considered an endangered species. Here, we used 16S rRNA amplicon sequencing to describe the fecal bacterial community of skywalker hoolock gibbons from different habitats and in captivity. Fecal samples (n = 5) from two captive gibbons were compared with wild populations (N = 6 gibbons, n = 33 samples). At the phylum level, Spirochetes, Proteobacteria, Firmicutes, Bacteroidetes dominated in captive gibbons, while Firmicutes, Bacteroidetes, and Tenericutes dominated in wild gibbons. At the genus level, captive gibbons were dominated by Treponema-2, followed by Succinivibrio and Cerasicoccus, while wild gibbons were dominated by Anaeroplasma, Prevotellaceae UCG-001, and Erysipelotrichaceae UCG-004. Captive rearing was significantly associated with lower taxonomic alpha-diversity, and different relative abundance of some dominant bacteria compared to wild gibbons. Predicted Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that captive gibbons have significantly lower total pathway diversity and higher relative abundance of bacterial functions involved in "drug resistance: antimicrobial" and "carbohydrate metabolism" than wild gibbons. This study reveals the potential influence of captivity and habitat on the gut bacterial community of gibbons and provides a basis for guiding the conservation management of captive populations.


Subject(s)
Gastrointestinal Microbiome , Hylobatidae , Animals , Hylobates , RNA, Ribosomal, 16S/genetics , Hylobatidae/genetics , Ecosystem , Bacteria/genetics
17.
J Ultrasound Med ; 42(12): 2845-2858, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37732901

ABSTRACT

OBJECTIVES: The study aims to compare retrospectively three clinically applied methods for the diagnostic performance of cystic renal masses (CRMs) by contrast-enhanced ultrasound (CEUS) and contrast-enhanced computer tomography (CECT) with Bosniak classification system. METHODS: A total of 52 cases of Bosniak II-IV CRMs in 49 consecutive patients were diagnosed from January 2013 to July 2022 and their data were analyzed. All patients had been subjected to CEUS and CECT simultaneously. Pathological diagnoses and masses stability were used as standard references to determine whether lesions were malignant or benign. Then 49 CRMs only with pathologic results were classified into group 1 and 2. RESULTS: A total of 52 CRMs in 49 enrolled patients were classified into 8 category II, 16 category IIF, 15 category III, and 13 category IV by CEUS (EFSUMB 2020), 10 category II, 13 category IIF, 16 category III, and 13 category IV by CEUS (V2019), while 15 category II, 9 category IIF, 13 category III, and 15 category IV by CECT (V2019). Pathological results and masses stability longer than 5 years follow-up performed substantially for CEUS (EFSUMB 2020), CEUS (V2019), and CECT (V2019) (kappa values were 0.696, 0.735, and 0.696, respectively). Among 49 pathologic approving CRMs, wall/septation thickness ≥4 mm, wall/septation thickness, presence of enhancing nodule and the diameter were found to be statistically significant for malignancy. Twenty-two malignant masses were correctly diagnosed by CEUS (V2019), while 21 malignant masses were both correctly diagnosed by CEUS (EFSUMB 2020) and CECT (V2019), and 1 mass was misdiagnosed. CONCLUSIONS: Bosniak classification of EFSUMB 2020 version might be as accurate as version 2019 CEUS and version 2019 CECT in diagnosing CRMs, and CEUS is found to have an excellent safety profile in dealing with clinical works.


Subject(s)
Kidney Diseases, Cystic , Kidney Neoplasms , Humans , Retrospective Studies , Kidney/pathology , Tomography, X-Ray Computed/methods , Kidney Neoplasms/diagnostic imaging , Ultrasonography/methods , Computers , Kidney Diseases, Cystic/diagnostic imaging , Contrast Media
18.
J Therm Biol ; 113: 103506, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37055124

ABSTRACT

Thermal comfort dictates our alliesthesia and behavioural responses in indoor environments with the primary aim of maintaining the thermal homeostasis of our human body. The recent advances in neurophysiology research have suggested that thermal comfort is a physiological response that is regulated by the deviations of both skin and core temperatures. Therefore, when conducting thermal comfort using indoor occupants in an indoor environment, proper experimental design and standardisation should be followed. However, there is no published source that provides an educational guideline on how to properly implement the thermal comfort experiment in an indoor environment using indoor occupants (normal occupational activities and during sleep in a home-based setting). Therefore, the primary purpose of this work is to illustrate how to conduct indoor thermal comfort related experiments using human trials in both normal occupational activities and during sleep in a home-based setting. Furthermore, we hope that the information presented in this article will result in better experimental design when conducting the experiment on thermal comfort using indoor occupants (occupational and home-based environments). Due to this reason, special emphasis will be focused on the experimental design, selection of participants and experimental standardisation. The key summary of this article is that thermal comfort related to indoor occupants in an indoor environment should perform priori sample analysis and follow the proper experimental design and standardisation as outlined in this article.


Subject(s)
Checklist , Research Design , Humans , Homeostasis , Temperature
19.
Ergonomics ; : 1-16, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37534470

ABSTRACT

Among a variety of environmental factors, operative temperature, relative humidity and ventilation rate are generally considered to be factors that significantly affect work performance, and the interactions among these three factors were quantitatively studied in this paper. Eighteen participants were recruited to complete the neurobehavioral ability tests in different environments by central composite design, and their performance was analysed by regression fitting and multi-factor coupling analysis. By defining the interval coefficient ß, the interaction effects between the factors were calculated quantitatively. The results showed that: for the performance of perception and expression tasks, there was an antagonistic effect between operative temperature and relative humidity (ß = 0.50 ∼ 0.82), between operative temperature and ventilation rate (ß = -0.29 to -0.38), and among the three factors (ß = 0.38-0.67). There was a synergy effect between relative humidity and ventilation rate (ß = 1.71-2.28). For the performance of reasoning tasks, the interaction effect among the three factors and their combinations is antagonistic effect (ß = 0.67-0.83).Practitioner summary: We proposed a method to calculate the quantitative relation of multi-factor interactions. In recent ergonomics studies, more and more factors have been included. This method can well describe the synergistic or antagonistic effect of the changes of other factors on the target factors.

20.
Hum Mutat ; 43(12): 2141-2152, 2022 12.
Article in English | MEDLINE | ID: mdl-36208099

ABSTRACT

ADAMTSL4 variants are one of the common causes of congenital ectopia lentis (EL), reported ocular comorbidities of which include iris anomalies, cataract, and glaucoma. However, a genotype-phenotype correlation has not been established. Potentially pathogenic ADAMTSL4 variants were screened from a Chinese cohort of congenital EL using panel-based next-generation sequencing followed by multiple bioinformatics analyses. The genotype-phenotype correlation was assessed via a systematic review of ADAMTSL4 variants within our data and those from the literature. A total of 12 variants of ADAMTSL4, including seven frameshift variants, one nonsense variant, two splicing variants, and two missense variants, were found in nine probands. Combing genetic and clinical information from 72 probands in the literature revealed 37 ADAMTSL4 variants known to cause EL, and the ethnic difference was prominent. The lens was inclined to dislocate inferior temporally (22, 27.16%), while the pupil was always located oppositely (9, 81.82%). Several anterior segments anomalies were identified, including ectopia pupillae (15, 18.52%), persistent pupillary membrane (9, 11.10%), poor pupil dilation (4, 30.8%), cataract (13, 24.10%), and glaucoma (8, 13.33%). Genotype-phenotype analysis revealed that truncation variants had higher risks of combined iris anomalies, including either ectopia pupillae or a persistent pupillary membrane (p = 0.007). The data from this study not only extend our knowledge of the ADAMTSL4 variant spectrum but also suggest that deleterious variants of ADAMTSL4 might be associated with severe ocular phenotypes.


Subject(s)
Cataract , Ectopia Lentis , Glaucoma , Humans , East Asian People , Pedigree , ADAMTS Proteins/genetics , Mutation , Ectopia Lentis/genetics , Ectopia Lentis/pathology , Cataract/genetics
SELECTION OF CITATIONS
SEARCH DETAIL