Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Crit Rev Food Sci Nutr ; : 1-26, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38766770

ABSTRACT

Volatile phenols impart particular aromas to wine. Due to their distinctive aroma characteristics and low sensory thresholds, volatile phenols can easily influence and modify the aroma of wine. Since these compounds can be formed in wines in various ways, it is necessary to clarify the possible sources of each volatile phenol to achieve management during the winemaking process. The sources of volatile phenols in wine are divided into berry-derived, fermentation-derived, and oak-derived. The pathways and factors influencing the formation of volatile phenols from each source are then reviewed respectively. In addition, an overview of the sensory impact of volatile phenols is given, both in terms of the aroma these volatile phenols directly bring to the wine and their contribution through aroma interactions. Finally, as an essential basis for exploring the scientific problems of volatile phenols in wine, approaches to quantitation of volatile phenols and their precursors are discussed in detail. With the advancement of analytical techniques, more details on volatile phenols have been discovered. Further exploration is worthwhile to achieve more detailed monitoring and targeted management of volatile phenols in wine.

2.
Food Microbiol ; 119: 104460, 2024 May.
Article in English | MEDLINE | ID: mdl-38225043

ABSTRACT

It is well-known that the co-inoculation of Saccharomyces cerevisiae and non-Saccharomyces strains can modulate and improve the aromatic quality of wine through their multi-level interactions. However, the individual contribution of metabolic interaction (MI) and physical interaction (PI) on wine volatiles remains poorly understood. In this work, we utilized a double-compartment bioreactor to examine the aromatic effect of MI and PI by comparing the volatiles production in Torulaspora delbrueckii and Saccharomyces cerevisiae single fermentations to their mixed fermentations with or without physical separation. Results showed that the PI between T. delbrueckii and S. cerevisiae increased the production of most aroma compounds, especially for acetate esters and volatile fatty acids. In comparison, the MI only promoted a few volatile compounds, including ethyl decanoate, isoamyl acetate, and isobutanol. Noticeably, the MI significantly decreased the levels of ethyl dodecanoate, 2-phenylethyl alcohol, and decanoic acid, which exhibited opposite profiles in PI. Our results indicated that the PI was mainly responsible for the improved volatiles in T. delbrueckii/S. cerevisiae mixed fermentation, while the MI can be targeted to modulate the specific aroma compounds. A thorough understanding of the PI and MI aromatic effect will empower winemakers to accurately and directionally control the volatile profile of the wine, promoting the application of multi-starters to produce diverse styles of wines.


Subject(s)
Torulaspora , Wine , Fermentation , Saccharomyces cerevisiae/metabolism , Torulaspora/metabolism , Wine/analysis , Acetates/metabolism
3.
Molecules ; 27(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36557951

ABSTRACT

To elucidate the effects of the different terroir on wine aroma in six sub-regions of Eastern Foothills of Helan Mountain in Ningxia, a premium wine-producing region in China, 71 Cabernet Sauvignon wines were investigated by gas chromatography-mass spectrometry (GC-MS), check-all-that-apply (CATA), and quantitative descriptive analysis (QDA). The bidirectional orthogonal partial least squares-discriminant analysis (O2PLS-DA) results showed that the Cabernet Sauvignon dry red wines from Xixia (XX) and Yongning (YN) had similar volatile profiles due to their geographical proximity and were characterized by higher concentrations of esters, higher alcohols, and volatile phenols because the similar aromatic profiles were detected in their dry red wines. Shizuishan (SZS) and Hongsipu (HSP) wines showed clear differences compared to the wines of the other four sub-regions, being mainly characterized by relatively higher phenolic aldehydes and volatile phenols. The concentrations of methoxypyrazines and norisoprenoids varied mainly depending on the climate diversity of the sub-regions. The highest 3-isobutyl-2-methoxypyrazine (IBMP) concentration was presented in the Helan (HL) wines. The Qingtongxia (QTX) wines have the highest ß-damascenone, which might be influenced by the fact that QTX has the lowest effective accumulated temperature and the highest sunshine duration among the five sub-regions. Esters including ethyl octanoate, ethyl decanoate, ethyl butanoate, ethyl hexanoate, and isoamyl acetate were the highest in HL. Additionally, the herbaceous, black berry, and red berry notes in HL and QTX were the most outstanding.


Subject(s)
Vitis , Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry/methods , Odorants/analysis , Alcoholic Beverages/analysis , Phenols/analysis , Esters/analysis , China , Vitis/chemistry , Volatile Organic Compounds/analysis
4.
Compr Rev Food Sci Food Saf ; 21(5): 3834-3866, 2022 09.
Article in English | MEDLINE | ID: mdl-35912664

ABSTRACT

Color is one of the most distinctive qualities of red wine. Despite new knowledge in the field of pigment identification, copigmentation, and oxidation being forthcoming, there is still a large gap between the fundamental research and practical winemaking outcomes. A state-of-art review from these two aspects is, therefore, necessary. This review first introduces updated knowledge about the primary pigments in wine, with emphasis on their physicochemical properties. Then, the mechanisms of copigmentation and oxidation are elucidated in detail, along with their relative contributions to wine color. Finally, the practical effects of copigmentation and micro-oxygenation (MOX) in winemaking are summarized and discussed. In general, wine coloration is ultimately determined by the anthocyanin flavylium cation, which is greatly influenced by wine pH. In young red wine, grape-derived anthocyanins and nonanthocyanin polyphenols (as copigments) are the foundation for wine coloration. During aging and storage, anthocyanin derivatives are formed via various chemical reactions, where moderate oxidation plays a vital role, whereas copigmentation constantly decreases. The essence of wine color evolution relates to the changes of physicochemical properties of primary pigments in wine, where the hydration equilibrium gradually diminishes. In practice, the effects of copigment addition and MOX during real vinification can be viewed as somewhat controversial, considering that many studies showed different effects on wine color and pigment concentration. Universal features can be summarized but some phenomena still remain unclear and deserve further exploration.


Subject(s)
Vitis , Wine , Anthocyanins/analysis , Anthocyanins/chemistry , Color , Polyphenols , Vitis/chemistry , Wine/analysis
5.
Molecules ; 26(11)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073256

ABSTRACT

Sensory interactions exist between 3-alkyl-2-methoxypyrazines and various volatiles in wines. In this study, the binary blending of Cabernet Franc wines containing high levels of MPs and three monovarietal red wines with two proportions was conducted after fermentation. Volatiles were detected by gas chromatography-mass spectrometry (GC-MS), and wines were evaluated by quantitative descriptive analysis at three-month intervals during six-month bottle aging. Results showed blending wines exhibited lower intensity of 'green pepper', especially CFC samples blended by Cabernet Sauvignon wines with an even higher concentration of 3-isobutyl-2-methoxypyrazine (IBMP). Based on Pearson correlation analysis, acetates could promote the expression of 'tropical fruity' and suppress 'green pepper' caused by IBMP. Positive correlation was observed among 'green pepper', 'herbaceous', and 'berry'. The concentration balance between IBMP and other volatiles associated with 'green pepper' and fruity notes was further investigated through sensory experiments in aroma reconstitution. Higher pleasant fruity perception was obtained with the concentration proportion of 1-hexanol (1000 µg/L), isoamyl acetate (550 µg/L), ethyl hexanoate (400 µg/L), and ethyl octanoate (900 µg/L) as in CFC samples. Blending wines with proper concentration of those volatiles would be efficient to weaken 'green pepper' and highlight fruity notes, which provided scientific theory on sensory modification of IBMP through blending technique.


Subject(s)
Food Analysis/methods , Pyrazines/analysis , Wine/analysis , Acetates , Adult , Female , Fruit/chemistry , Gas Chromatography-Mass Spectrometry , Humans , Male , Odorants , Principal Component Analysis , Reproducibility of Results , Vitis/chemistry , Volatile Organic Compounds , Volatilization , Young Adult
6.
Molecules ; 24(5)2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30818764

ABSTRACT

Bottle aging is the final stage before wines are drunk, and is considered as a maturation time when many chemical changes occur. To get a better understanding of the evolution of wines' flavor profile, the flavor compounds (phenolic and volatile compounds), dissolved oxygen (DO), and flavor characters (OAVs and chromatic parameters) of rosé and dry white wines bottled with different closures were determined after 18 months' bottle aging. The results showed the main phenolic change trends of rosé wines were decreasing while the trends of white wines were increasing, which could be the reason for their unique DO changing behaviors. Volatile compounds could be clustered into fluctuating, increasing, and decreasing groups using k-means algorithm. Most volatile compounds, especially some long-chain aliphatic acid esters (octanoates and decanoates), exhibited a lower decrease rate in rosé wines sealed with natural corks and white wines with screw caps. After 18 months of bottle aging, wines treated with natural corks and their alternatives could be distinguished into two groups based on flavor compounds via PLS-DA. As for flavor characters, the total intensity of aroma declined obviously compared with their initial counterparts. Rosé wines exhibit visual difference in color, whereas such a phenomenon was not observed in white wines.


Subject(s)
Flavoring Agents/analysis , Food Handling/methods , Food Packaging/methods , Oxygen/analysis , Phenols/analysis , Volatile Organic Compounds/analysis , Wine/analysis , Food Handling/instrumentation , Food Packaging/instrumentation , Humans , Odorants/analysis , Taste
7.
J Sci Food Agric ; 98(1): 104-112, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28543285

ABSTRACT

BACKGROUND: Monosaccharides, organic acids and amino acids are the important flavour-related components in wines. The aim of this article is to develop and validate a method that could simultaneously analyse these compounds in wine based on silylation derivatisation and gas chromatography-mass spectrometry (GC-MS), and apply this method to the investigation of the changes of these compounds and speculate upon their related influences on Cabernet Sauvignon wine flavour during wine ageing. This work presented a new approach for wine analysis and provided more information concerning red wine ageing. RESULTS: This method could simultaneously quantitatively analyse 2 monosaccharides, 8 organic acids and 13 amino acids in wine. A validation experiment showed good linearity, sensitivity, reproducibility and recovery. Multiple derivatives of five amino acids have been found but their effects on quantitative analysis were negligible, except for methionine. The evolution pattern of each category was different, and we speculated that the corresponding mechanisms involving microorganism activities, physical interactions and chemical reactions had a great correlation with red wine flavours during ageing. CONCLUSION: Simultaneously quantitative analysis of monosaccharides, organic acids and amino acids in wine was feasible and reliable and this method has extensive application prospects. © 2017 Society of Chemical Industry.


Subject(s)
Acids/chemistry , Amino Acids/chemistry , Gas Chromatography-Mass Spectrometry/methods , Monosaccharides/chemistry , Wine/analysis , Humans , Odorants/analysis , Smell , Time Factors
8.
Int J Mol Sci ; 17(11)2016 Nov 23.
Article in English | MEDLINE | ID: mdl-27886056

ABSTRACT

Variety is one of the major factors influencing grape and wine aromatic characteristics. Green leaf volatiles (GLVs), derived from lipoxygenase-hydroperoxides lyase (LOX-HPL) pathway, are important components for the aromatic quality of grapes and wines. However, the varietal difference regarding GLVs accumulation and related gene expression are poorly studied. This work exhibited that the accumulation of various GLVs and the expression of LOX-HPL pathway genes in four Vitis vinifera wine grape cultivars: Syrah, Muscat Tchervine, Gewürztraminer and Chardonnay. The results showed a variety dependence of GLVs profile. Muscat Tchervine harvested grapes contained less C6 aldehydes and the most abundant esters, which corresponded to very low VvLOXA and VvHPL1 expression abundance as well as high VvAAT transcript in this variety. High expression level of both VvLOXA and VvHPL1 paralleled with higher level of C6 aldehydes together with higher alcohols in Syrah grape. Gewürztraminer and Chardonnay grapes had high aldehydes and alcohols as well as low esters, which were resulted from their higher expression level of VvLOXA or VvHPL1 and lower VvAAT. From these above corresponding relations, it is concluded that VvLOXA, VvHPL1 and VvAAT in the LOX-HPL pathway are targets for altering GLVs composition in the grape varieties.


Subject(s)
Aldehyde-Lyases/genetics , Cytochrome P-450 Enzyme System/genetics , Fruit/genetics , Gene Expression Regulation, Plant , Lipoxygenase/genetics , Plant Leaves/genetics , Plant Proteins/genetics , Vitis/genetics , Alcohols/metabolism , Aldehyde-Lyases/metabolism , Aldehydes/metabolism , Cytochrome P-450 Enzyme System/metabolism , Discriminant Analysis , Flavoring Agents/metabolism , Fruit/metabolism , Genetic Variation , Lipoxygenase/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Species Specificity , Vitis/classification , Vitis/metabolism , Wine/analysis
9.
BMC Plant Biol ; 15: 240, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26444528

ABSTRACT

BACKGROUND: Terpenes are of great interest to winemakers because of their extremely low perception thresholds and pleasant floral odors. Even for the same variety, terpene profile can be substantially different for grapevine growing environments. Recently a series of genes required for terpene biosynthesis were biochemically characterized in grape berries. However, the genes that dominate the differential terpene accumulation of grape berries between regions have yet to be identified. METHODS: Free and glycosidically-bound terpenes were identified and quantified using gas chromatography-mass spectrometry (GC-MS) technique. The transcription expression profiling of the genes was obtained by RNA sequencing and part of the results were verified by quantitative real time PCR (QPCR). The gene co-expression networks were constructed with the Cytoscape software v 2.8.2 ( www.cytoscape.org). RESULTS: 'Muscat Blanc a Petits Grains' berries were collected from two wine-producing regions with strikingly different climates, Gaotai (GT) in Gansu Province and Changli (CL) in Hebei Province in China, at four developmental stages for two consecutive years. GC-MS analysis demonstrated that both free and glycosidically bound terpenes accumulated primarily after veraison and that mature grape berries from CL contained significantly higher concentrations of free and glycosidically bound terpenes than berries from GT. Transcriptome analysis revealed that some key genes involved in terpene biosynthesis were markedly up-regulated in the CL region. Particularly in the MEP pathway, the expression of VviHDR (1-hydroxy-2-methyl-2-butenyl 4-diphosphate reductase) paralleled with the accumulation of terpenes, which can promote the flow of isopentenyl diphosphate (IPP) into the terpene synthetic pathway. The glycosidically bound monoterpenes accumulated differentially along with maturation in both regions, which is synchronous with the expression of a monoterpene glucosyltransferase gene (VviUGT85A2L4 (VviGT14)). Other genes were also found to be related to the differential accumulation of terpenes and monoterpene glycosides in the grapes between regions. Transcription factors that could regulate terpene synthesis were predicted through gene co-expression network analysis. Additionally, the genes involved in abscisic acid (ABA) and ethylene signal responses were expressed at high levels earlier in GT grapes than in CL grapes. CONCLUSIONS: Differential production of free and glycosidically-bound terpenes in grape berries across GT and CL regions should be related at least to the expression of both VviHDR and VviUGT85A2L4 (VviGT14). Considering the expression patterns of both transcription factors and mature-related genes, we infer that less rainfall and stronger sunshine in the GT region could initiate the earlier expression of ripening-related genes and accelerate the berry maturation, eventually limiting the production of terpene volatiles.


Subject(s)
Genes, Plant , Metabolome/genetics , Terpenes/metabolism , Acids , China , Fruit , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Regulatory Networks , Glycosides/metabolism , Glycosyltransferases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Transcription Factors/metabolism , Vitis/genetics , Volatilization
10.
Foods ; 13(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928861

ABSTRACT

In this study, the influence of the distillation system, geographical origin, and aging time on the volatiles of brandy was investigated. An untargeted metabolomics approach was used to classify the volatile profiles of brandies based on the presence of different distillation systems and geographical origins. Through the predictive ability of PLS-DA models, it was found that higher alcohols, C13-norisopenoids, and furans could serve as key markers to discriminate between continuous stills and pot stills, and the contents of C6/C9 compounds, C13-norisoprenoids, and sesquiterpenoids were significantly affected by brandy origin. A network analysis illustrated that straight-chain fatty acid ethyl esters gradually accumulated during aging, and several higher alcohols, furfural, 5-methylfurfural, 4-ethylphenol, TDN, ß-damascenone, naphthalene, styrene, and decanal were also positively correlated with aging time. This study provides effective methods for distinguishing brandies collected from different distillation systems and geographical origins and summarizes an overview of the changes in volatile compounds during the aging process.

11.
Food Chem ; 464(Pt 2): 141678, 2024 Oct 16.
Article in English | MEDLINE | ID: mdl-39454438

ABSTRACT

Micro­oxygenation (MOX) is the technology providing a slow and continuous oxidation reaction in the whole winemaking process to improve wine quality. However, traditional methods of oxygen management struggle to achieve a precise control over oxygen at critical process points, failing to meet the personalized and diverse production demands of wine. In this paper, an overview of three application stages of MOX, and the detailed dosage and duration at each stage were summarized. In addition, the application prospect of the new MOX application facility in wine production was proposed. Compared to passive MOX, active MOX could allow a more precise control of oxygen. The innovation of MOX equipment based on active MOX technique will be an inspiring interest in the research of winemaking. The integration and development of precise MOX will achieve the targeted control of wine quality and the creation of distinctive characteristics of wine style.

12.
Front Plant Sci ; 15: 1441893, 2024.
Article in English | MEDLINE | ID: mdl-39258302

ABSTRACT

Flavonoids, including proanthocyanidins (PAs), anthocyanins and flavonols are essential secondary metabolites that contribute to the nutritional value and sensory quality of grape berry and red wine. Advances in molecular biology technology have led to substantial progress in understanding the regulation of flavonoid biosynthesis. The influence of terroir on grape berries and wine has garnered increasing attention, yet its comprehensive regulatory network remains underexplored. In terms of application, environmental factors such as water, light, and temperature are more easily regulated in grapevines compared to soil conditions. Therefore, we summarize their effects on flavonoid content and composition, constructing a network that links environmental factors, hormones, and metabolites to provide a deeper understanding of the underlying mechanisms. This review enriches the knowledge of the regulatory network mechanisms governing flavonoid responses to environmental factors in grapes.

13.
Plants (Basel) ; 13(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732440

ABSTRACT

Cluster thinning has been widely applied in yield management and its effect on green leaf volatiles (GLVs) in wines has seldom been studied. GLVs are important flavor compositions for grapes and wines. This work aimed to investigate the impact of cluster thinning on these volatiles and their precursors in grapes and wines. Severe cluster thinning (CT1) and medium cluster thinning (CT2) were performed on Cabernet Sauvignon (Vitis vinifera L.) vines in two sites (G-farm and Y-farm) from Xinjiang province in the Northwest of China. The impact of cluster thinning treatments on the accumulation of GLVs and their precursors, long chain fatty acids (LCFAs) of grape berries and C6 volatiles, in resulting wines was investigated. Multivariate analysis showed that cluster thinning treatments induced significant changes in fruit and wine composition in both farms. In Y-farm, medium cluster thinning (CT2) significantly increased the average cluster weight of harvested berries. Additionally, both cluster thinning treatments (CT1 and CT2) increased fatty acids in harvested berries and CT2 led to an increase in C6 esters and a decrease in C6 alcohols in the wines of Y-farm under the warmer and drier 2012 vintage. However, the effect of cluster thinning was likely negative in G-farm due to its wetter soil and excessive organic matter. The treatments may be applicable for local grape growers to improve viticultural practices for the more balanced vegetative and reproductive growth of Cabernet Sauvignon grapevines. This work also provided further knowledge on the regulation of fatty acids and the derived C6 volatiles through the lipoxygenase (LOX) pathway.

14.
Front Plant Sci ; 15: 1351008, 2024.
Article in English | MEDLINE | ID: mdl-38576780

ABSTRACT

Proanthocyanidins (PAs) and anthocyanins are flavonoids that contribute to the quality and health benefits of grapes and wine. Salinity affects their biosynthesis, but the underlying mechanism is still unclear. We studied the effects of NaCl stress on PA and anthocyanin biosynthesis in grape suspension cells derived from berry skins of Vitis vinifera L. Cabernet Sauvignon using metabolite profiling and transcriptome analysis. We treated the cells with low (75 mM NaCl) and high (150 mM NaCl) salinity for 4 and 7 days. High salinity inhibited cell growth and enhanced PA and anthocyanin accumulation more than low salinity. The salinity-induced PAs and anthocyanins lacked C5'-hydroxylation modification, suggesting the biological significance of delphinidin- and epigallocatechin-derivatives in coping with stress. The genes up-regulated by salinity stress indicated that the anthocyanin pathway was more sensitive to salt concentration than the PA pathway, and WGCNA analysis revealed the coordination between flavonoid biosynthesis and cell wall metabolism under salinity stress. We identified transcription factors potentially involved in regulating NaCl dose- and time-dependent PA and anthocyanin accumulation, showing the dynamic remodeling of flavonoid regulation network under different salinity levels and durations. Our study provides new insights into regulator candidates for tailoring flavonoid composition and molecular indicators of salt stress in grape cells.

15.
Plants (Basel) ; 13(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38891351

ABSTRACT

This study investigated the effect of leaf removal at three stages of grape development on the phenolic and volatile profiles of Cabernet Sauvignon and Marselan grapevines for two consecutive years in the Jieshi Mountain region, an area of eastern China with high summer rainfall. The results indicated that cluster-zone leaf removal generally reduced the titratable acidity of both varieties, but did not affect the total soluble solids of grape berries. Leaf-removal treatments increased the anthocyanin and flavonol content of berries in both varieties. However, in Cabernet Sauvignon, leaf removal negatively affected the norisoprenoid compounds, with a more pronounced impact observed when the leaf removal was conducted at an early stage. This negative effect may be related to a decrease in the levels of violaxanthin and neoxanthin, potential precursors of vitisprine and ß-damascenone. In contrast, the removal of leaves had no effect on the norisoprenoid aroma of Marselan grapes.

16.
Food Chem ; 440: 138226, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38141438

ABSTRACT

The appeal of icewine is attributable to its distinct aroma characteristics, such as 'honey', 'caramel', and 'dried fruit', but little is known about the chemical basis of these aroma attributes. A set of icewines with different aroma intensities were selected by a panel of wine experts. Detailed volatile compound analyses and sensory descriptive analyses were performed on the selected icewines. Using partial least-squares regression, several lactones, esters, terpenes, furanones, and ß-damascenone were positively correlated with 'honey', 'caramel', and 'dried fruit' aromas. Aroma reconstitution studies confirmed that terpenes could significantly enhance the 'honey' aroma, but weaken the 'caramel' aroma, while lactones and furanones could significantly enhance the 'caramel' and 'dried fruit' aromas. In addition, this study demonstrated that terpenes, lactones, and furanones interacted synergistically with each other to cause the sensory perception of the characteristic aromas of icewine.


Subject(s)
Vitis , Volatile Organic Compounds , Wine , Odorants/analysis , Vitis/chemistry , Gas Chromatography-Mass Spectrometry , Taste , Wine/analysis , Lactones/analysis , Volatile Organic Compounds/analysis
17.
Food Chem ; 464(Pt 1): 141593, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39413604

ABSTRACT

The evolution of volatile esters leads to changes in wine aroma during aging. In this study, polyphenol effect on ester equilibrium in wines was investigated through three aging experiments. Kinetic parameters of esters were calculated in four red wines. Results showed that the reaction rate constant (kobsd) was mainly determined by the molar concentration ratio of alcohols or acids to the corresponding esters. Phenolic matrix was more likely to influence the activation energy (Ea). Higher contents of total polyphenol led to the increase of Ea, resulting in the reactions less prone to happen but more susceptible to temperature changes. Combined with the practical wine aging and exogenous polyphenol addition experiments, the impact of polyphenol composition was revealed. Flavanols with higher polymerization degrees were found more beneficial for ester preservation than monomer flavanols or anthocyanins. This work could provide theoretical guidance in enhancing fruity aroma in wines via modulating phenolic matrix.

18.
Food Chem X ; 22: 101283, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38524777

ABSTRACT

In this work, the polysaccharide profile of different grapes and red wines in China was studied and the influences of two common winemaking techniques on the components of wine were analyzed. The soluble polysaccharide content in the skins of native grape species in China (non-Vitis vinifera grapes) was significantly higher than that of Vitis vinifera species, while the terroir effect on V. vinifera varieties was limited. The combination of the enzyme preparation and the addition of mannoproteins (MPs) at the beginning of alcoholic fermentation (MP1 + E) could increase the contents of MPs and acid polysaccharides (APS) compared to the control wines. Meanwhile, better color characteristics and higher level of anthocyanin derivatives were observed. However, MP1 + E treatment reduced the content of polysaccharides rich in arabinose and galactose (PRAGs) due to enzymatic hydrolysis. The study will provide useful information for winemakers to regulate the wine polysaccharide profile.

19.
Food Res Int ; 184: 114229, 2024 May.
Article in English | MEDLINE | ID: mdl-38609216

ABSTRACT

This study aimed to characterize the sensory profiles of wines produced using the flash détente (FD) technique and to identify the flavor compounds contributing to the sensory characteristics. The FD technique was applied to two major grape varieties, Cabernet Sauvignon and Marselan, from the Changli region of China to produce high-quality wines with aging potential. Compared to the traditional macerated wines, the FD wines showed greater color intensity, mainly due to the higher levels of anthocyanins. Regarding the aroma characteristics, FD wines were found to have a more pronounced fruitness, especially fresh fruit note, which was due to the contribution of higher concentration of esters. Concurrently, FD wines showed an increased sweet note which was associated with increased lactones and furanones. In addition, FD wines exhibited reduced green and floral notes due to lower levels of C6 alcohols and C13-norisoprenoids. With regard to mouthfeel, FD wines presented greater astringency and bitterness, which was due to the higher levels of phenolics. The total concentration of condensed tannins and condensed tannins for each degree of polymerization was considerably higher in FD wines due to the strong extraction of the FD technique. A significant increase in grape-derived polysaccharides and glycerol was also found in FD wines, contributing to a fuller body. This study contributed to an increase in the knowledge of the Changli region and demonstrated that the FD technique could be applied to the wine production in this region to address the negative impacts of rainfall in individual vintages.


Subject(s)
Proanthocyanidins , Wine , Anthocyanins , Astringents
20.
Food Res Int ; 164: 112440, 2023 02.
Article in English | MEDLINE | ID: mdl-36738004

ABSTRACT

Correlating aroma expression with volatile compounds has long been an ambition in researches of flavor chemistry. To propose a reliable methodology to depict wine aroma, 76 oak barrel-aged dry red wines were investigated through the combination of machine learning algorithm and multivariate analysis. Aromatic characteristic was evaluated by quantitative descriptive analysis (QDA), while non- or oak derived volatiles were detected by HS-SPME-GC-MS and targeted SPE-GC-QqQ-MS/MS, respectively. Results showed that variable importance for projection values (VIPs) from partial least-squares regression (PLSR) and mean decrease accuracy (MDA) from random forest were efficient parameters for feature selection. The correlating accuracy of the optimal PLSR model to predict intensities of different aroma characteristics through selected volatile compounds could achieve 0.754 to 0.943, representing potential application to manage wine aroma by chemical assay in winemaking. From the perspective of mathematical modeling in the real wine matrix, the network analysis between aroma characteristics and key volatile compounds indicated that the expression of oak aroma was not only directly contributed by volatiles derived from oak wood, but also influenced by ethyl esters, including ethyl acetate, ethyl butanoate, ethyl hexanoate, ethyl decanoate, and ethyl nonanoate.


Subject(s)
Quercus , Volatile Organic Compounds , Wine , Wine/analysis , Quercus/chemistry , Tandem Mass Spectrometry , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL