Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 470
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Methods ; 21(2): 195-212, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38347141

ABSTRACT

Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Developed by a large international consortium in a multistage Delphi process, it is based on the novel concept of a problem fingerprint-a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), dataset and algorithm output. On the basis of the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as classification tasks at image, object or pixel level, namely image-level classification, object detection, semantic segmentation and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. Its applicability is demonstrated for various biomedical use cases.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Machine Learning , Semantics
2.
Nat Methods ; 21(2): 182-194, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38347140

ABSTRACT

Validation metrics are key for tracking scientific progress and bridging the current chasm between artificial intelligence research and its translation into practice. However, increasing evidence shows that, particularly in image analysis, metrics are often chosen inadequately. Although taking into account the individual strengths, weaknesses and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multistage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides a reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Although focused on biomedical image analysis, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. The work serves to enhance global comprehension of a key topic in image analysis validation.


Subject(s)
Artificial Intelligence
3.
PLoS Biol ; 22(9): e3002782, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39269986

ABSTRACT

An understanding of human brain individuality requires the integration of data on brain organization across people and brain regions, molecular and systems scales, as well as healthy and clinical states. Here, we help advance this understanding by leveraging methods from computational genomics to integrate large-scale genomic, transcriptomic, neuroimaging, and electronic-health record data sets. We estimated genetically regulated gene expression (gr-expression) of 18,647 genes, across 10 cortical and subcortical regions of 45,549 people from the UK Biobank. First, we showed that patterns of estimated gr-expression reflect known genetic-ancestry relationships, regional identities, as well as inter-regional correlation structure of directly assayed gene expression. Second, we performed transcriptome-wide association studies (TWAS) to discover 1,065 associations between individual variation in gr-expression and gray-matter volumes across people and brain regions. We benchmarked these associations against results from genome-wide association studies (GWAS) of the same sample and found hundreds of novel associations relative to these GWAS. Third, we integrated our results with clinical associations of gr-expression from the Vanderbilt Biobank. This integration allowed us to link genes, via gr-expression, to neuroimaging and clinical phenotypes. Fourth, we identified associations of polygenic gr-expression with structural and functional MRI phenotypes in the Human Connectome Project (HCP), a small neuroimaging-genomic data set with high-quality functional imaging data. Finally, we showed that estimates of gr-expression and magnitudes of TWAS were generally replicable and that the p-values of TWAS were replicable in large samples. Collectively, our results provide a powerful new resource for integrating gr-expression with population genetics of brain organization and disease.


Subject(s)
Biological Specimen Banks , Brain , Genome-Wide Association Study , Neuroimaging , Phenotype , Humans , Genome-Wide Association Study/methods , Neuroimaging/methods , Brain/metabolism , Brain/diagnostic imaging , Male , Transcriptome/genetics , Female , Gray Matter/diagnostic imaging , Gray Matter/metabolism , Middle Aged , Gene Expression Profiling/methods , Genomics/methods , Aged , Gene Expression/genetics , Polymorphism, Single Nucleotide/genetics
4.
Proc Natl Acad Sci U S A ; 120(42): e2219666120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37824529

ABSTRACT

Recent studies have revealed the production of time-locked blood oxygenation level-dependent (BOLD) functional MRI (fMRI) signals throughout the entire brain in response to tasks, challenging the existence of sparse and localized brain functions and highlighting the pervasiveness of potential false negative fMRI findings. "Whole-brain" actually refers to gray matter, the only tissue traditionally studied with fMRI. However, several reports have demonstrated reliable detection of BOLD signals in white matter, which have previously been largely ignored. Using simple tasks and analyses, we demonstrate BOLD signal changes across the whole brain, in both white and gray matters, in similar manner to previous reports of whole brain studies. We investigated whether white matter displays time-locked BOLD signals across multiple structural pathways in response to a stimulus in a similar manner to the cortex. We find that both white and gray matter show time-locked activations across the whole brain, with a majority of both tissue types showing statistically significant signal changes for all task stimuli investigated. We observed a wide range of signal responses to tasks, with different regions showing different BOLD signal changes to the same task. Moreover, we find that each region may display different BOLD responses to different stimuli. Overall, we present compelling evidence that, just like all gray matter, essentially all white matter in the brain shows time-locked BOLD signal changes in response to multiple stimuli, challenging the idea of sparse functional localization and the prevailing wisdom of treating white matter BOLD signals as artifacts to be removed.


Subject(s)
White Matter , White Matter/diagnostic imaging , White Matter/physiology , Brain Mapping , Brain/diagnostic imaging , Brain/physiology , Gray Matter/diagnostic imaging , Gray Matter/physiology , Magnetic Resonance Imaging
5.
Cereb Cortex ; 34(3)2024 03 01.
Article in English | MEDLINE | ID: mdl-38517178

ABSTRACT

Cognitive decline with aging involves multifactorial processes, including changes in brain structure and function. This study focuses on the role of white matter functional characteristics, as reflected in blood oxygenation level-dependent signals, in age-related cognitive deterioration. Building on previous research confirming the reproducibility and age-dependence of blood oxygenation level-dependent signals acquired via functional magnetic resonance imaging, we here employ mediation analysis to test if aging affects cognition through white matter blood oxygenation level-dependent signal changes, impacting various cognitive domains and specific white matter regions. We used independent component analysis of resting-state blood oxygenation level-dependent signals to segment white matter into coherent hubs, offering a data-driven view of white matter's functional architecture. Through correlation analysis, we constructed a graph network and derived metrics to quantitatively assess regional functional properties based on resting-state blood oxygenation level-dependent fluctuations. Our analysis identified significant mediators in the age-cognition relationship, indicating that aging differentially influences cognitive functions by altering the functional characteristics of distinct white matter regions. These findings enhance our understanding of the neurobiological basis of cognitive aging, highlighting the critical role of white matter in maintaining cognitive integrity and proposing new approaches to assess interventions targeting cognitive decline in older populations.


Subject(s)
Cognitive Dysfunction , White Matter , Humans , Aged , White Matter/diagnostic imaging , Reproducibility of Results , Brain Mapping , Aging , Brain/diagnostic imaging , Cognition , Magnetic Resonance Imaging , Cognitive Dysfunction/diagnostic imaging
6.
J Neurosci ; 43(1): 142-154, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36384679

ABSTRACT

Language comprehension requires the rapid retrieval and integration of contextually appropriate concepts ("semantic cognition"). Current neurobiological models of semantic cognition are limited by the spatial and temporal restrictions of single-modality neuroimaging and lesion approaches. This is a major impediment given the rapid sequence of processing steps that have to be coordinated to accurately comprehend language. Through the use of fused functional magnetic resonance imaging and electroencephalography analysis in humans (n = 26 adults; 15 females), we elucidate a temporally and spatially specific neurobiological model for real-time semantic cognition. We find that semantic cognition in the context of language comprehension is supported by trade-offs between widespread neural networks over the course of milliseconds. Incorporation of spatial and temporal characteristics, as well as behavioral measures, provide convergent evidence for the following progression: a hippocampal/anterior temporal phonological semantic retrieval network (peaking at ∼300 ms after the sentence final word); a frontotemporal thematic semantic network (∼400 ms); a hippocampal memory update network (∼500 ms); an inferior frontal semantic syntactic reappraisal network (∼600 ms); and nodes of the default mode network associated with conceptual coherence (∼750 ms). Additionally, in typical adults, mediatory relationships among these networks are significantly predictive of language comprehension ability. These findings provide a conceptual and methodological framework for the examination of speech and language disorders, with additional implications for the characterization of cognitive processes and clinical populations in other cognitive domains.SIGNIFICANCE STATEMENT The present study identifies a real-time neurobiological model of the meaning processes required during language comprehension (i.e., "semantic cognition"). Using a novel application of fused magnetic resonance imaging and electroencephalography in humans, we found that semantic cognition during language comprehension is supported by a rapid progression of widespread neural networks related to meaning, meaning integration, memory, reappraisal, and conceptual cohesion. Relationships among these systems were predictive of individuals' language comprehension efficiency. Our findings are the first to use fused neuroimaging analysis to elucidate language processes. In so doing, this study provides a new conceptual and methodological framework in which to characterize language processes and guide the treatment of speech and language deficits/disorders.


Subject(s)
Brain , Semantics , Adult , Female , Humans , Brain/diagnostic imaging , Cognition , Language , Comprehension , Magnetic Resonance Imaging , Brain Mapping
7.
Ann Neurol ; 93(4): 805-818, 2023 04.
Article in English | MEDLINE | ID: mdl-36571386

ABSTRACT

OBJECTIVE: We examined medical records to determine health conditions associated with dementia at varied intervals prior to dementia diagnosis in participants from the Baltimore Longitudinal Study of Aging (BLSA). METHODS: Data were available for 347 Alzheimer's disease (AD), 76 vascular dementia (VaD), and 811 control participants without dementia. Logistic regressions were performed associating International Classification of Diseases, 9th Revision (ICD-9) health codes with dementia status across all time points, at 5 and 1 year(s) prior to dementia diagnosis, and at the year of diagnosis, controlling for age, sex, and follow-up length of the medical record. RESULTS: In AD, the earliest and most consistent associations across all time points included depression, erectile dysfunction, gait abnormalities, hearing loss, and nervous and musculoskeletal symptoms. Cardiomegaly, urinary incontinence, non-epithelial skin cancer, and pneumonia were not significant until 1 year before dementia diagnosis. In VaD, the earliest and most consistent associations across all time points included abnormal electrocardiogram (EKG), cardiac dysrhythmias, cerebrovascular disease, non-epithelial skin cancer, depression, and hearing loss. Atrial fibrillation, occlusion of cerebral arteries, essential tremor, and abnormal reflexes were not significant until 1 year before dementia diagnosis. INTERPRETATION: These findings suggest that some health conditions are associated with future dementia beginning at least 5 years before dementia diagnosis and are consistently seen over time, while others only reach significance closer to the date of diagnosis. These results also show that there are both shared and distinctive health conditions associated with AD and VaD. These results reinforce the need for medical intervention and treatment to lessen the impact of health comorbidities in the aging population. ANN NEUROL 2023;93:805-818.


Subject(s)
Alzheimer Disease , Cerebrovascular Disorders , Dementia, Vascular , Male , Humans , Aged , Alzheimer Disease/complications , Alzheimer Disease/epidemiology , Alzheimer Disease/diagnosis , Dementia, Vascular/complications , Dementia, Vascular/epidemiology , Longitudinal Studies , Cerebrovascular Disorders/epidemiology , Comorbidity
8.
Alzheimers Dement ; 2024 Oct 23.
Article in English | MEDLINE | ID: mdl-39439365

ABSTRACT

BACKGROUND: The magnitudes and patterns of alterations of the white-gray matter (WM-GM) functional connectome in preclinical Alzheimer's disease (AD), and their associations with amyloid and cognition, remain unclear. METHODS: We compared regional WM-GM functional connectivity (FC) and network properties in subjects with preclinical AD (or AD dementia) and controls (total n = 344). Their associations with positron emission tomography AV45-measured amyloid beta (Aß) load and modified Preclinical Alzheimer Cognitive Composite (mPACC) scores were examined. RESULTS: Preclinical AD subjects showed lower FC in specific WM-GM pairs and reduced segregation of control, dorsal attention, and somatomotor networks. A major portion of the reduced FC and network segregations were linked to elevated Aß. Reduced FC of one WM-GM pair correlated with impaired mPACC. AD dementia exhibited broader reductions and stronger associations. DISCUSSION: The WM-GM functional connectome undergoes regional and systemic dysfunctions as early as in the preclinical stage, correlating with amyloid deposition and predicting cognitive impairment. HIGHLIGHTS: Preclinical Alzheimer's disease (AD) subjects showed lower functional connectivity in specific white-gray matter (WM-GM) pairs and reduced segregations of control, dorsal attention, and somatomotor networks. A major portion of the reduced connectivity and network segregations were linked to elevated amyloid beta load. Only one WM-GM pair's reduced connectivity was linearly correlated with impaired cognitive composite scores. AD dementia showed more extensive reductions in connectivity, network integration, and segregation, with stronger associations with amyloid elevation and cognitive impairment. The WM-GM functional connectome offers a distinct perspective for understanding changes in brain functional architecture throughout the AD continuum.

9.
Neuroimage ; 266: 119826, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36543265

ABSTRACT

Quantitative diffusion MRI (dMRI) is a promising technique for evaluating the spinal cord in health and disease. However, low signal-to-noise ratio (SNR) can impede interpretation and quantification of these images. The purpose of this study is to evaluate several dMRI denoising approaches on their ability to improve the quality, reliability, and accuracy of quantitative diffusion MRI of the spinal cord. We evaluate three denoising approaches (Non-Local Means, Marchenko-Pastur PCA, and a newly proposed Patch2Self algorithm) and conduct five experiments to validate the denoising performance on clinical-quality and commonly-acquired dMRI acquisitions: 1) a phantom experiment to assess denoising error and bias; 2) a multi-vendor, multi-acquisition open experiment for both qualitative and quantitative evaluation of noise residuals; 3) a bootstrapping experiment to estimate uncertainty of parametric maps; 4) an assessment of spinal cord lesion conspicuity in a multiple sclerosis group; and 5) an evaluation of denoising for advanced parametric multi-compartment modeling. We find that all methods improve signal-to-noise ratio and conspicuity of MS lesions in individual diffusion weighted images (DWIs), but MPPCA and Patch2Self excel at improving the quality and intra-cord contrast of diffusion weighted images - removing signal fluctuations due to thermal noise while improving precision of estimation of diffusion parameters even with very few DWIs (i.e., 16-32) typical of clinical acquisitions. These denoising approaches hold promise for facilitating reliable diffusion observations and measurements in the spinal cord to investigate biological and pathological processes.


Subject(s)
Cervical Cord , Humans , Cervical Cord/diagnostic imaging , Reproducibility of Results , Diffusion Magnetic Resonance Imaging/methods , Spinal Cord/diagnostic imaging , Signal-To-Noise Ratio , Algorithms
10.
Neuroimage ; 278: 120277, 2023 09.
Article in English | MEDLINE | ID: mdl-37473978

ABSTRACT

The effects of normal aging on functional connectivity (FC) within various brain networks of gray matter (GM) have been well-documented. However, the age effects on the networks of FC between white matter (WM) and GM, namely WM-GM FC, remains unclear. Evaluating crucial properties, such as global efficiency (GE), for a WM-GM FC network poses a challenge due to the absence of closed triangle paths which are essential for assessing network properties in traditional graph models. In this study, we propose a bipartite graph model to characterize the WM-GM FC network and quantify these challenging network properties. Leveraging this model, we assessed the WM-GM FC network properties at multiple scales across 1,462 cognitively normal subjects aged 22-96 years from three repositories (ADNI, BLSA and OASIS-3) and investigated the age effects on these properties throughout adulthood and during late adulthood (age ≥70 years). Our findings reveal that (1) heterogeneous alterations occurred in region-specific WM-GM FC over the adulthood and decline predominated during late adulthood; (2) the FC density of WM bundles engaged in memory, executive function and processing speed declined with age over adulthood, particularly in later years; and (3) the GE of attention, default, somatomotor, frontoparietal and limbic networks reduced with age over adulthood, and GE of visual network declined during late adulthood. These findings provide unpresented insights into multi-scale alterations in networks of WM-GM functional synchronizations during normal aging. Furthermore, our bipartite graph model offers an extendable framework for quantifying WM-engaged networks, which may contribute to a wide range of neuroscience research.


Subject(s)
Gray Matter , White Matter , Humans , Adult , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging , Aging , Brain , White Matter/diagnostic imaging
11.
Neuroimage ; 277: 120231, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37330025

ABSTRACT

Estimating structural connectivity from diffusion-weighted magnetic resonance imaging is a challenging task, partly due to the presence of false-positive connections and the misestimation of connection weights. Building on previous efforts, the MICCAI-CDMRI Diffusion-Simulated Connectivity (DiSCo) challenge was carried out to evaluate state-of-the-art connectivity methods using novel large-scale numerical phantoms. The diffusion signal for the phantoms was obtained from Monte Carlo simulations. The results of the challenge suggest that methods selected by the 14 teams participating in the challenge can provide high correlations between estimated and ground-truth connectivity weights, in complex numerical environments. Additionally, the methods used by the participating teams were able to accurately identify the binary connectivity of the numerical dataset. However, specific false positive and false negative connections were consistently estimated across all methods. Although the challenge dataset doesn't capture the complexity of a real brain, it provided unique data with known macrostructure and microstructure ground-truth properties to facilitate the development of connectivity estimation methods.


Subject(s)
Diffusion Magnetic Resonance Imaging , Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Monte Carlo Method , Phantoms, Imaging
12.
Radiology ; 308(1): e222937, 2023 07.
Article in English | MEDLINE | ID: mdl-37489991

ABSTRACT

Background An artificial intelligence (AI) algorithm has been developed for fully automated body composition assessment of lung cancer screening noncontrast low-dose CT of the chest (LDCT) scans, but the utility of these measurements in disease risk prediction models has not been assessed. Purpose To evaluate the added value of CT-based AI-derived body composition measurements in risk prediction of lung cancer incidence, lung cancer death, cardiovascular disease (CVD) death, and all-cause mortality in the National Lung Screening Trial (NLST). Materials and Methods In this secondary analysis of the NLST, body composition measurements, including area and attenuation attributes of skeletal muscle and subcutaneous adipose tissue, were derived from baseline LDCT examinations by using a previously developed AI algorithm. The added value of these measurements was assessed with sex- and cause-specific Cox proportional hazards models with and without the AI-derived body composition measurements for predicting lung cancer incidence, lung cancer death, CVD death, and all-cause mortality. Models were adjusted for confounding variables including age; body mass index; quantitative emphysema; coronary artery calcification; history of diabetes, heart disease, hypertension, and stroke; and other PLCOM2012 lung cancer risk factors. Goodness-of-fit improvements were assessed with the likelihood ratio test. Results Among 20 768 included participants (median age, 61 years [IQR, 57-65 years]; 12 317 men), 865 were diagnosed with lung cancer and 4180 died during follow-up. Including the AI-derived body composition measurements improved risk prediction for lung cancer death (male participants: χ2 = 23.09, P < .001; female participants: χ2 = 15.04, P = .002), CVD death (males: χ2 = 69.94, P < .001; females: χ2 = 16.60, P < .001), and all-cause mortality (males: χ2 = 248.13, P < .001; females: χ2 = 94.54, P < .001), but not for lung cancer incidence (male participants: χ2 = 2.53, P = .11; female participants: χ2 = 1.73, P = .19). Conclusion The body composition measurements automatically derived from baseline low-dose CT examinations added predictive value for lung cancer death, CVD death, and all-cause death, but not for lung cancer incidence in the NLST. Clinical trial registration no. NCT00047385 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Fintelmann in this issue.


Subject(s)
Cardiovascular Diseases , Lung Neoplasms , Female , Male , Humans , Middle Aged , Early Detection of Cancer , Artificial Intelligence , Body Composition , Lung
13.
Psychol Med ; 53(13): 6261-6270, 2023 10.
Article in English | MEDLINE | ID: mdl-36482694

ABSTRACT

BACKGROUND: Late-life depression (LLD) is characterized by differences in resting state functional connectivity within and between intrinsic functional networks. This study examined whether clinical improvement to antidepressant medications is associated with pre-randomization functional connectivity in intrinsic brain networks. METHODS: Participants were 95 elders aged 60 years or older with major depressive disorder. After clinical assessments and baseline MRI, participants were randomized to escitalopram or placebo with a two-to-one allocation for 8 weeks. Non-remitting participants subsequently entered an 8-week trial of open-label bupropion. The main clinical outcome was depression severity measured by MADRS. Resting state functional connectivity was measured between a priori key seeds in the default mode (DMN), cognitive control, and limbic networks. RESULTS: In primary analyses of blinded data, lower post-treatment MADRS score was associated with higher resting connectivity between: (a) posterior cingulate cortex (PCC) and left medial prefrontal cortex; (b) PCC and subgenual anterior cingulate cortex (ACC); (c) right medial PFC and subgenual ACC; (d) right orbitofrontal cortex and left hippocampus. Lower post-treatment MADRS was further associated with lower connectivity between: (e) the right orbitofrontal cortex and left amygdala; and (f) left dorsolateral PFC and left dorsal ACC. Secondary analyses associated mood improvement on escitalopram with anterior DMN hub connectivity. Exploratory analyses of the bupropion open-label trial associated improvement with subgenual ACC, frontal, and amygdala connectivity. CONCLUSIONS: Response to antidepressants in LLD is related to connectivity in the DMN, cognitive control and limbic networks. Future work should focus on clinical markers of network connectivity informing prognosis. REGISTRATION: ClinicalTrials.gov NCT02332291.


Subject(s)
Depressive Disorder, Major , Humans , Aged , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/drug therapy , Escitalopram , Bupropion/pharmacology , Bupropion/therapeutic use , Depression , Brain/diagnostic imaging , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Brain Mapping , Gyrus Cinguli , Magnetic Resonance Imaging
14.
J Magn Reson Imaging ; 58(4): 1211-1220, 2023 10.
Article in English | MEDLINE | ID: mdl-36840398

ABSTRACT

BACKGROUND: While graph measures are used increasingly to characterize human connectomes, uncertainty remains in how to use these metrics in a quantitative and reproducible manner. Specifically, there is a lack of community consensus regarding the number of streamlines needed to generate connectomes. PURPOSE: The purpose was to define the relationship between streamline count and graph-measure value, reproducibility, and repeatability. STUDY TYPE: Retrospective analysis of previously prospective study. POPULATION: Ten healthy subjects, 70% female, aged 25.3 ± 5.9 years. FIELD STRENGTH/SEQUENCE: A 3-T, T1-weighted sequences and diffusion-weighted imaging (DWI) with two gradient strengths (b-values = 1200 and 3000 sec/mm2 , echo time [TE] = 68 msec, repetition time [TR] = 5.4 seconds, 120 slices, field of view = 188 mm2 ). ASSESSMENT: A total of 13 graph-theory measures were derived for each subject by generating probabilistic whole-brain tractography from DWI and mapping the structural connectivity to connectomes. The streamline count invariance from changes in mean, repeatability, and reproducibility were derived. STATISTICAL TESTS: Paired t-test with P value <0.05 was used to compare graph-measure means with a reference, intraclass correlation coefficient (ICC) to measure repeatability, and concordance correlation coefficient (CCC) to measure reproducibility. RESULTS: Modularity and global efficiency converged to their reference mean with ICC > 0.90 and CCC > 0.99. Edge count, small-worldness, randomness, and average betweenness centrality converged to the reference mean, with ICC > 0.90 and CCC > 0.95. Assortativity and average participation coefficient converged with ICC > 0.75 and CCC > 0.90. Density, average node strength, average node degree, characteristic path length, average local efficiency, and average clustering coefficient did not converge, though had ICC > 0.90 and CCC > 0.99. For these measures, alternate definitions that converge a reference mean are provided. DATA CONCLUSION: Modularity and global efficiency are streamline count invariant for greater than 6 million and 100,000 streamlines, respectively. Density, average node strength, average node degree, characteristic path length, average local efficiency, and average clustering coefficient were strongly dependent on streamline count. EVIDENCE LEVEL: 1. TECHNICAL EFFICACY: Stage 1.


Subject(s)
Connectome , Humans , Female , Male , Reproducibility of Results , Prospective Studies , Retrospective Studies , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging
15.
Stroke ; 53(3): 808-816, 2022 03.
Article in English | MEDLINE | ID: mdl-34702069

ABSTRACT

BACKGROUND AND PURPOSE: Left ventricular (LV) mass index is a marker of subclinical LV remodeling that relates to white matter damage in aging, but molecular pathways underlying this association are unknown. This study assessed if LV mass index related to cerebrospinal fluid (CSF) biomarkers of microglial activation (sTREM2 [soluble triggering receptor expressed on myeloid cells 2]), axonal injury (NFL [neurofilament light]), neurodegeneration (total-tau), and amyloid-ß, and whether these biomarkers partially accounted for associations between increased LV mass index and white matter damage. We hypothesized higher LV mass index would relate to greater CSF biomarker levels, and these pathologies would partially mediate associations with cerebral white matter microstructure. METHODS: Vanderbilt Memory and Aging Project participants who underwent cardiac magnetic resonance, lumbar puncture, and diffusion tensor imaging (n=142, 72±6 years, 37% mild cognitive impairment [MCI], 32% APOE-ε4 positive, LV mass index 51.4±8.1 g/m2, NFL 1070±588 pg/mL) were included. Linear regressions and voxel-wise analyses related LV mass index to each biomarker and diffusion tensor imaging metrics, respectively. Follow-up models assessed interactions with MCI and APOE-ε4. In models where LV mass index significantly related to a biomarker and white matter microstructure, we assessed if the biomarker mediated white matter associations. RESULTS: Among all participants, LV mass index was unrelated to CSF biomarkers (P>0.33). LV mass index interacted with MCI (P=0.01), such that higher LV mass index related to increased NFL among MCI participants. Associations were also present among APOE-ε4 carriers (P=0.02). NFL partially mediated up to 13% of the effect of increased LV mass index on white matter damage. CONCLUSIONS: Subclinical cardiovascular remodeling, measured as an increase in LV mass index, is associated with neuroaxonal degeneration among individuals with MCI and APOE-ε4. Neuroaxonal degeneration partially reflects associations between higher LV mass index and white matter damage. Findings highlight neuroaxonal degeneration, rather than amyloidosis or microglia, may be more relevant in pathways between structural cardiovascular remodeling and white matter damage.


Subject(s)
Amyloid beta-Peptides/cerebrospinal fluid , Apolipoproteins E/cerebrospinal fluid , Diffuse Axonal Injury/cerebrospinal fluid , Membrane Glycoproteins/cerebrospinal fluid , Ventricular Remodeling , White Matter/injuries , tau Proteins/cerebrospinal fluid , Aged , Female , Humans , Male , Receptors, Immunologic
16.
Neuroimage ; 254: 119029, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35231632

ABSTRACT

Virtual dissection of white matter (WM) using diffusion MRI tractography is confounded by its poor reproducibility. Despite the increased adoption of advanced reconstruction models, early region-of-interest driven protocols based on diffusion tensor imaging (DTI) remain the dominant reference for virtual dissection protocols. Here we bridge this gap by providing a comprehensive description of typical WM anatomy reconstructed using a reproducible automated subject-specific parcellation-based approach based on probabilistic constrained-spherical deconvolution (CSD) tractography. We complement this with a WM template in MNI space comprising 68 bundles, including all associated anatomical tract selection labels and associated automated workflows. Additionally, we demonstrate bundle inter- and intra-subject variability using 40 (20 test-retest) datasets from the human connectome project (HCP) and 5 sessions with varying b-values and number of b-shells from the single-subject Multiple Acquisitions for Standardization of Structural Imaging Validation and Evaluation (MASSIVE) dataset. The most reliably reconstructed bundles were the whole pyramidal tracts, primary corticospinal tracts, whole superior longitudinal fasciculi, frontal, parietal and occipital segments of the corpus callosum and middle cerebellar peduncles. More variability was found in less dense bundles, e.g., the fornix, dentato-rubro-thalamic tract (DRTT), and premotor pyramidal tract. Using the DRTT as an example, we show that this variability can be reduced by using a higher number of seeding attempts. Overall inter-session similarity was high for HCP test-retest data (median weighted-dice = 0.963, stdev = 0.201 and IQR = 0.099). Compared to the HCP-template bundles there was a high level of agreement for the HCP test-retest data (median weighted-dice = 0.747, stdev = 0.220 and IQR = 0.277) and for the MASSIVE data (median weighted-dice = 0.767, stdev = 0.255 and IQR = 0.338). In summary, this WM atlas provides an overview of the capabilities and limitations of automated subject-specific probabilistic CSD tractography for mapping white matter fasciculi in healthy adults. It will be most useful in applications requiring a reproducible parcellation-based dissection protocol, and as an educational resource for applied neuroimaging and clinical professionals.


Subject(s)
Connectome , White Matter , Adult , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging/methods , Humans , Reproducibility of Results , White Matter/diagnostic imaging
17.
Neuroimage ; 257: 119327, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35636227

ABSTRACT

Limitations in the accuracy of brain pathways reconstructed by diffusion MRI (dMRI) tractography have received considerable attention. While the technical advances spearheaded by the Human Connectome Project (HCP) led to significant improvements in dMRI data quality, it remains unclear how these data should be analyzed to maximize tractography accuracy. Over a period of two years, we have engaged the dMRI community in the IronTract Challenge, which aims to answer this question by leveraging a unique dataset. Macaque brains that have received both tracer injections and ex vivo dMRI at high spatial and angular resolution allow a comprehensive, quantitative assessment of tractography accuracy on state-of-the-art dMRI acquisition schemes. We find that, when analysis methods are carefully optimized, the HCP scheme can achieve similar accuracy as a more time-consuming, Cartesian-grid scheme. Importantly, we show that simple pre- and post-processing strategies can improve the accuracy and robustness of many tractography methods. Finally, we find that fiber configurations that go beyond crossing (e.g., fanning, branching) are the most challenging for tractography. The IronTract Challenge remains open and we hope that it can serve as a valuable validation tool for both users and developers of dMRI analysis methods.


Subject(s)
Connectome , White Matter , Brain/diagnostic imaging , Connectome/methods , Diffusion , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Humans , Image Processing, Computer-Assisted/methods
18.
Hum Brain Mapp ; 43(4): 1196-1213, 2022 03.
Article in English | MEDLINE | ID: mdl-34921473

ABSTRACT

Characterizing and understanding the limitations of diffusion MRI fiber tractography is a prerequisite for methodological advances and innovations which will allow these techniques to accurately map the connections of the human brain. The so-called "crossing fiber problem" has received tremendous attention and has continuously triggered the community to develop novel approaches for disentangling distinctly oriented fiber populations. Perhaps an even greater challenge occurs when multiple white matter bundles converge within a single voxel, or throughout a single brain region, and share the same parallel orientation, before diverging and continuing towards their final cortical or sub-cortical terminations. These so-called "bottleneck" regions contribute to the ill-posed nature of the tractography process, and lead to both false positive and false negative estimated connections. Yet, as opposed to the extent of crossing fibers, a thorough characterization of bottleneck regions has not been performed. The aim of this study is to quantify the prevalence of bottleneck regions. To do this, we use diffusion tractography to segment known white matter bundles of the brain, and assign each bundle to voxels they pass through and to specific orientations within those voxels (i.e. fixels). We demonstrate that bottlenecks occur in greater than 50-70% of fixels in the white matter of the human brain. We find that all projection, association, and commissural fibers contribute to, and are affected by, this phenomenon, and show that even regions traditionally considered "single fiber voxels" often contain multiple fiber populations. Together, this study shows that a majority of white matter presents bottlenecks for tractography which may lead to incorrect or erroneous estimates of brain connectivity or quantitative tractography (i.e., tractometry), and underscores the need for a paradigm shift in the process of tractography and bundle segmentation for studying the fiber pathways of the human brain.


Subject(s)
Diffusion Tensor Imaging/methods , Image Processing, Computer-Assisted/methods , White Matter/anatomy & histology , White Matter/diagnostic imaging , Adult , Humans , Neural Pathways/anatomy & histology , Neural Pathways/diagnostic imaging
19.
Hum Brain Mapp ; 43(7): 2134-2147, 2022 05.
Article in English | MEDLINE | ID: mdl-35141980

ABSTRACT

The segmentation of brain structures is a key component of many neuroimaging studies. Consistent anatomical definitions are crucial to ensure consensus on the position and shape of brain structures, but segmentations are prone to variation in their interpretation and execution. White-matter (WM) pathways are global structures of the brain defined by local landmarks, which leads to anatomical definitions being difficult to convey, learn, or teach. Moreover, the complex shape of WM pathways and their representation using tractography (streamlines) make the design and evaluation of dissection protocols difficult and time-consuming. The first iteration of Tractostorm quantified the variability of a pyramidal tract dissection protocol and compared results between experts in neuroanatomy and nonexperts. Despite virtual dissection being used for decades, in-depth investigations of how learning or practicing such protocols impact dissection results are nonexistent. To begin to fill the gap, we evaluate an online educational tractography course and investigate the impact learning and practicing a dissection protocol has on interrater (groupwise) reproducibility. To generate the required data to quantify reproducibility across raters and time, 20 independent raters performed dissections of three bundles of interest on five Human Connectome Project subjects, each with four timepoints. Our investigation shows that the dissection protocol in conjunction with an online course achieves a high level of reproducibility (between 0.85 and 0.90 for the voxel-based Dice score) for the three bundles of interest and remains stable over time (repetition of the protocol). Suggesting that once raters are familiar with the software and tasks at hand, their interpretation and execution at the group level do not drastically vary. When compared to previous work that used a different method of communication for the protocol, our results show that incorporating a virtual educational session increased reproducibility. Insights from this work may be used to improve the future design of WM pathway dissection protocols and to further inform neuroanatomical definitions.


Subject(s)
Connectome , White Matter , Brain , Diffusion Tensor Imaging/methods , Humans , Image Processing, Computer-Assisted/methods , Reproducibility of Results , White Matter/diagnostic imaging
20.
Nat Mater ; 20(12): 1663-1669, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34675374

ABSTRACT

Wavelength-selective thermal emitters (WS-EMs) are of interest due to the lack of cost-effective, narrow-band sources in the mid- to long-wave infrared. WS-EMs can be realized via Tamm plasmon polaritons (TPPs) supported by distributed Bragg reflectors on metals. However, the design of multiple resonances is challenging as numerous structural parameters must be optimized simultaneously. Here we use stochastic gradient descent to optimize TPP emitters (TPP-EMs) composed of an aperiodic distributed Bragg reflector deposited on doped cadmium oxide (CdO) film, where layer thicknesses and carrier density are inversely designed. The combination of the aperiodic distributed Bragg reflector with the designable plasma frequency of CdO enables multiple TPP-EM modes to be simultaneously designed with arbitrary spectral control not accessible with metal-based TPPs. Using this approach, we experimentally demonstrated and numerically proposed TPP-EMs exhibiting single or multiple emission bands with designable frequencies, line-widths and amplitudes. This thereby enables lithography-free, wafer-scale WS-EMs that are complementary metal-oxide-semiconductor compatible for applications such as free-space communications and gas sensing.

SELECTION OF CITATIONS
SEARCH DETAIL