ABSTRACT
To synthesize vast amounts of high-throughput biological information, omics-fields like epigenetics have applied risk scores to develop biomarkers for environmental exposures. Extending the risk score analytic tool to the metabolomic data would be highly beneficial. This research aimed to develop and evaluate metabolomic risk score (metRS) approaches reflecting the biological response to traffic-related air pollution (TRAP) exposure (fine particulate matter, black carbon, and nitrogen dioxide). A simulation study compared three metRS methodologies: elastic net regression, which uses penalized regression to select metabolites, and two variations of thresholding, where a p-value cutoff is used to select metabolites. The methods performance was compared to assess 1) ability to correctly select metabolites associated with daily TRAP and 2) ability of the risk score to predict daily TRAP exposure. Power calculations and false discovery rates (FDR) were calculated for each approach. This metRS was applied to two real cohorts, the Center for Health Discovery and Wellbeing (CHDWB, n = 180) and Environment and Reproductive Health (EARTH, n = 200). In simulations, elastic net regression consistently presented inflated FDR for both high and low effect sizes and across all three sample sizes (n = 200; 500; 1000). Power to detect correct metabolites exceeded 0.8 for all three sample sizes in all three methods. In the real data application assessing associations of metabolomics risk scores and TRAP, associations were largely null. While we did not identify strong associations between the risk scores and TRAP in the real data application, metabolites selected by the risk score approaches were enriched in pathways that are well-known for their association with TRAP. These results demonstrate that certain methodologies to construct metabolomics risk scores are statistically robust and valid; however, standardized metabolic profiling and large sample sizes are required.
ABSTRACT
SARS-CoV-2 has caused over 100,000,000 cases and almost 2,500,000 deaths globally. Comprehensive assessment of the multifaceted antiviral Ab response is critical for diagnosis, differentiation of severity, and characterization of long-term immunity, especially as COVID-19 vaccines become available. Severe disease is associated with early, massive plasmablast responses. We developed a multiplex immunoassay from serum/plasma of acutely infected and convalescent COVID-19 patients and prepandemic and postpandemic healthy adults. We measured IgA, IgG, and/or IgM against SARS-CoV-2 nucleocapsid (N), spike domain 1 (S1), S1-receptor binding domain (RBD) and S1-N-terminal domain. For diagnosis, the combined [IgA + IgG + IgM] or IgG levels measured for N, S1, and S1-RBD yielded area under the curve values ≥0.90. Virus-specific Ig levels were higher in patients with severe/critical compared with mild/moderate infections. A strong prozone effect was observed in sera from severe/critical patients-a possible source of underestimated Ab concentrations in previous studies. Mild/moderate patients displayed a slower rise and lower peak in anti-N and anti-S1 IgG levels compared with severe/critical patients, but anti-RBD IgG and neutralization responses reached similar levels at 2-4 mo after symptom onset. Measurement of the Ab responses in sera from 18 COVID-19-vaccinated patients revealed specific responses for the S1-RBD Ag and none against the N protein. This highly sensitive, SARS-CoV-2-specific, multiplex immunoassay measures the magnitude, complexity, and kinetics of the Ab response and can distinguish serum Ab responses from natural SARS-CoV-2 infections (mild or severe) and mRNA COVID-19 vaccines.
Subject(s)
Antibodies, Viral , COVID-19 Vaccines/administration & dosage , COVID-19 , SARS-CoV-2 , Severity of Illness Index , Vaccination , Adult , Aged , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/immunology , COVID-19/prevention & control , Female , Humans , Immunoassay , Male , Middle Aged , SARS-CoV-2/immunology , SARS-CoV-2/metabolismABSTRACT
BACKGROUND: SARS-CoV-2 has caused over 36,000,000 cases and 1,000,000 deaths globally. Comprehensive assessment of the multifaceted anti-viral antibody response is critical for diagnosis, differentiation of severe disease, and characterization of long-term immunity. Initial observations suggest that severe disease is associated with higher antibody levels and greater B cell/plasmablast responses. A multi-antigen immunoassay to define the complex serological landscape and clinical associations is essential. METHODS: We developed a multiplex immunoassay and evaluated serum/plasma from adults with RT-PCR-confirmed SARS-CoV-2 infections during acute illness (N=52) and convalescence (N=69); and pre-pandemic (N=106) and post-pandemic (N=137) healthy adults. We measured IgA, IgG, and/or IgM against SARS-CoV-2 Nucleocapsid (N), Spike domain 1 (S1), receptor binding domain (S1-RBD) and S1-N-terminal domain (S1-NTD). RESULTS: To diagnose infection, the combined [IgA+IgG+IgM] or IgG for N, S1, and S1-RBD yielded AUC values -0.90 by ROC curves. From days 6-30 post-symptom onset, the levels of antigen-specific IgG, IgA or [IgA+IgG+IgM] were higher in patients with severe/critical compared to mild/moderate infections. Consistent with excessive concentrations of antibodies, a strong prozone effect was observed in sera from severe/critical patients. Notably, mild/moderate patients displayed a slower rise and lower peak in anti-N and anti-S1 IgG levels compared to severe/critical patients, but anti-RBD IgG and neutralization responses reached similar levels at 2-4 months. CONCLUSION: This SARS-CoV-2 multiplex immunoassay measures the magnitude, complexity and kinetics of the antibody response against multiple viral antigens. The IgG and combined-isotype SARS-CoV-2 multiplex assay is highly diagnostic of acute and convalescent disease and may prognosticate severity early in illness. ONE SENTENCE SUMMARY: In contrast to patients with moderate infections, those with severe COVID-19 develop prominent, early antibody responses to S1 and N proteins.
ABSTRACT
Proper heart morphogenesis requires a delicate balance between hemodynamic forces, myocardial activity, morphogen gradients, and epigenetic signaling, all of which are coupled with genetic regulatory networks. Recently both in vivo and in silico studies have tried to better understand hemodynamics at varying stages of veretebrate cardiogenesis. In particular, the intracardial hemodynamics during the onset of trabeculation is notably complex-the inertial and viscous fluid forces are approximately equal at this stage and small perturbations in morphology, scale, and steadiness of the flow can lead to significant changes in bulk flow structures, shear stress distributions, and chemical morphogen gradients. The immersed boundary method was used to numerically simulate fluid flow through simplified two-dimensional and stationary trabeculated ventricles of 72, 80, and 120 h post fertilization wild type zebrafish embryos and ErbB2-inhibited embryos at seven days post fertilization. A 2D idealized trabeculated ventricular model was also used to map the bifurcations in flow structure that occur as a result of the unsteadiness of flow, trabeculae height, and fluid scale ( R e ). Vortex formation occurred in intertrabecular regions for biologically relevant parameter spaces, wherein flow velocities increased. This indicates that trabecular morphology may alter intracardial flow patterns and hence ventricular shear stresses and morphogen gradients. A potential implication of this work is that the onset of vortical (disturbed) flows can upregulate Notch1 expression in endothelial cells in vivo and hence impacts chamber morphogenesis, valvulogenesis, and the formation of the trabeculae themselves. Our results also highlight the sensitivity of cardiac flow patterns to changes in morphology and blood rheology, motivating efforts to obtain spatially and temporally resolved chamber geometries and kinematics as well as the careful measurement of the embryonic blood rheology. The results also suggest that there may be significant changes in shear signalling due to morphological and mechanical variation across individuals and species.
ABSTRACT
Recent in vivo experiments have illustrated the importance of understanding the haemodynamics of heart morphogenesis. In particular, ventricular trabeculation is governed by a delicate interaction between haemodynamic forces, myocardial activity, and morphogen gradients, all of which are coupled to genetic regulatory networks. The underlying haemodynamics at the stage of development in which the trabeculae form is particularly complex, given the balance between inertial and viscous forces. Small perturbations in the geometry, scale, and steadiness of the flow can lead to changes in the overall flow structures and chemical morphogen gradients, including the local direction of flow, the transport of morphogens, and the formation of vortices. The immersed boundary method was used to solve the two-dimensional fluid-structure interaction problem of fluid flow moving through a two chambered heart of a zebrafish (Danio rerio), with a trabeculated ventricle, at 96 hours post fertilization (hpf). Trabeculae heights and hematocrit were varied, and simulations were conducted for two orders of magnitude of Womersley number, extending beyond the biologically relevant range (0.2-12.0). Both intracardial and intertrabecular vortices formed in the ventricle for biologically relevant parameter values. The bifurcation from smooth streaming flow to vortical flow depends upon the trabeculae geometry, hematocrit, and Womersley number, $Wo$. This work shows the importance of hematocrit and geometry in determining the bulk flow patterns in the heart at this stage of development.
Subject(s)
Heart/anatomy & histology , Heart/growth & development , Hemodynamics/physiology , Hydrodynamics , Animals , Heart Ventricles/anatomy & histology , Heart Ventricles/growth & development , Hematocrit , Models, Theoretical , ZebrafishABSTRACT
New Zealand patients have rights in relation to their healthcare including the right to consent to medical treatment. Medical imaging is the third largest category of hospital procedure in New Zealand and it constitutes a circumstance where examination without consent could be assault. New Zealand assault law is unique, and medical radiation technologists (MRTs) must be educated about their responsibilities. A literature review was conducted focusing on the medicolegal aspects of consent as it relates to medical imaging. This was compared to the practical realities of practicing radiography as experienced by the author. Finally, the guidance given by the professional bodies for MRTs in New Zealand was examined to determine whether it adequately informs MRTs of the responsibilities and provides them with a framework to guide their practice. Medical imaging is a diverse area presenting a range of challenging circumstances for consent. Currently, the consent framework and guidance provided by professional bodies is insufficient and in need of updating.