Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Pharmacogenet Genomics ; 22(3): 206-14, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22209866

ABSTRACT

OBJECTIVES: The common ATP-sensitive potassium (KATP) channel variants E23K and S1369A, found in the KCNJ11 and ABCC8 genes, respectively, form a haplotype that is associated with an increased risk for type 2 diabetes. Our previous studies showed that KATP channel inhibition by the A-site sulfonylurea gliclazide was increased in the K23/A1369 haplotype. Therefore, we studied the pharmacogenomics of seven clinically used sulfonylureas and glinides to determine their structure-activity relationships in KATP channels containing either the E23/S1369 nonrisk or K23/A1369 risk haplotypes. RESEARCH DESIGN AND METHODS: The patch-clamp technique was used to determine sulfonylurea and glinide inhibition of recombinant human KATP channels containing either the E23/S1369 or the K23/A1369 haplotype. RESULTS: KATP channels containing the K23/A1369 risk haplotype were significantly less sensitive to inhibition by tolbutamide, chlorpropamide, and glimepiride (IC50 values for K23/A1369 vs. E23/S1369=1.15 vs. 0.71 µmol/l; 4.19 vs. 3.04 µmol/l; 4.38 vs. 2.41 nmol/l, respectively). In contrast, KATP channels containing the K23/A1369 haplotype were significantly more sensitive to inhibition by mitiglinide (IC50=9.73 vs. 28.19 nmol/l for K23/A1369 vs. E23/S1369) and gliclazide. Nateglinide, glipizide, and glibenclamide showed similar inhibitory profiles in KATP channels containing either haplotype. CONCLUSION: Our results demonstrate that the ring-fused pyrrole moiety in several A-site drugs likely underlies the observed inhibitory potency of these drugs on KATP channels containing the K23/A1369 risk haplotype. It may therefore be possible to tailor existing therapy or design novel drugs that display an increased efficacy in type 2 diabetes patients homozygous for these common KATP channel haplotypes.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Chlorpropamide/pharmacokinetics , Gene Expression Regulation/drug effects , Potassium Channels, Inwardly Rectifying/genetics , Receptors, Drug/genetics , Tolbutamide/pharmacokinetics , ATP-Binding Cassette Transporters/antagonists & inhibitors , Chlorpropamide/administration & dosage , Cyclohexanes/administration & dosage , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Gliclazide/administration & dosage , Glyburide/administration & dosage , Haplotypes , Homozygote , Humans , Isoindoles/administration & dosage , Nateglinide , Patch-Clamp Techniques , Phenylalanine/administration & dosage , Phenylalanine/analogs & derivatives , Polymorphism, Single Nucleotide , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Receptors, Drug/antagonists & inhibitors , Structure-Activity Relationship , Sulfonylurea Compounds/administration & dosage , Sulfonylurea Receptors , Tolbutamide/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL