Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Water Health ; 22(1): 197-234, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38295081

ABSTRACT

The aim of this updated systematic review was to offer an overview of the effectiveness of environmental surveillance (ES) of SARS-CoV-2 as a potential early-warning system (EWS) for COVID-19 and new variants of concerns (VOCs) during the second year of the pandemic. An updated literature search was conducted to evaluate the added value of ES of SARS-CoV-2 for public health decisions. The search for studies published between June 2021 and July 2022 resulted in 1,588 publications, identifying 331 articles for full-text screening. A total of 151 publications met our inclusion criteria for the assessment of the effectiveness of ES as an EWS and early detection of SARS-CoV-2 variants. We identified a further 30 publications among the grey literature. ES confirms its usefulness as an EWS for detecting new waves of SARS-CoV-2 infection with an average lead time of 1-2 weeks for most of the publication. ES could function as an EWS for new VOCs in areas with no registered cases or limited clinical capacity. Challenges in data harmonization and variant detection require standardized approaches and innovations for improved public health decision-making. ES confirms its potential to support public health decision-making and resource allocation in future outbreaks.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics/prevention & control , Environmental Monitoring
2.
BMC Public Health ; 23(1): 1714, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37667223

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, wastewater-based surveillance gained great international interest as an additional tool to monitor SARS-CoV-2. In autumn 2021, the Norwegian Institute of Public Health decided to pilot a national wastewater surveillance (WWS) system for SARS-CoV-2 and its variants between June 2022 and March 2023. We evaluated the system to assess if it met its objectives and its attribute-based performance. METHODS: We adapted the available guidelines for evaluation of surveillance systems. The evaluation was carried out as a descriptive analysis and consisted of the following three steps: (i) description of the WWS system, (ii) identification of users and stakeholders, and (iii) analysis of the system's attributes and performance including sensitivity, specificity, timeliness, usefulness, representativeness, simplicity, flexibility, stability, and communication. Cross-correlation analysis was performed to assess the system's ability to provide early warning signal of new wave of infections. RESULTS: The pilot WWS system was a national surveillance system using existing wastewater infrastructures from the largest Norwegian municipalities. We found that the system was sensitive, timely, useful, representative, simple, flexible, acceptable, and stable to follow the general trend of infection. Preliminary results indicate that the system could provide an early signal of changes in variant distribution. However, challenges may arise with: (i) specificity due to temporary fluctuations of RNA levels in wastewater, (ii) representativeness when downscaling, and (iii) flexibility and acceptability when upscaling the system due to limited resources and/or capacity. CONCLUSIONS: Our results showed that the pilot WWS system met most of its surveillance objectives. The system was able to provide an early warning signal of 1-2 weeks, and the system was useful to monitor infections at population level and complement routine surveillance when individual testing activity was low. However, temporary fluctuations of WWS values need to be carefully interpreted. To improve quality and efficiency, we recommend to standardise and validate methods for assessing trends of new waves of infection and variants, evaluate the WWS system using a longer operational period particularly for new variants, and conduct prevalence studies in the population to calibrate the system and improve data interpretation.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Wastewater , Wastewater-Based Epidemiological Monitoring , Pandemics , Norway/epidemiology
3.
Vaccine ; 41(26): 3923-3929, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37211454

ABSTRACT

BACKGROUND: Health care workers (HCW) have a higher exposure to SARS-CoV-2 virus than other professionals and to protect both HCW and patients, HCW have been prioritized for vaccination against SARS-CoV-2 in many countries. Estimating the COVID-19 vaccine effectiveness among HCW is important to provide recommendations to protect risk groups. METHODS: We estimated vaccine effectiveness against SARS-CoV-2 infections using Cox proportional hazard models among HCW with comparisons in the general population, from 1 August 2021 to 28 January 2022. Vaccine status is specified as a time-varying covariate and all models incorporated explicit time and were adjusted for age, sex, comorbidities, county of residence, country of birth, and living conditions. Data from the adult Norwegian population (aged 18-67 years) and HCW workplace data (as registered 1 January 2021) were collated from the National Preparedness Register for COVID-19 (Beredt C19). RESULTS: Vaccine effectiveness was higher for Delta than for the Omicron variant in HCW (71 % compared to 19 %) as well as in non-HCW (69 % compared to -32 %). For the Omicron variant a 3rd dose provides significantly better protection against infection than 2 doses in both HCW (33 %) and non-HCW (10 %). Further, HCW seem to have better vaccine effectiveness than non-HCW for the Omicron, but not for the Delta variant. CONCLUSIONS: Vaccine effectiveness were comparable between HCW and non-HCW for the delta variant, but significantly higher in HCW than non-HCW for the omicron variant. Both HCW and non-HCW got increased protection from a third dose.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Adult , COVID-19 Vaccines , Vaccine Efficacy , Norway , Health Personnel
4.
Int J Infect Dis ; 130: 182-188, 2023 May.
Article in English | MEDLINE | ID: mdl-36893942

ABSTRACT

OBJECTIVES: We estimated the BNT162b2 vaccine effectiveness (VE) against any (symptomatic or not) SARS-CoV-2 Delta and Omicron infection among adolescents (aged 12-17 years) in Norway from August 2021 to January 2022. METHODS: We used Cox proportional hazard models, where vaccine status was included as a time-varying covariate and models were adjusted for age, sex, comorbidities, residence county, birth country, and living conditions. RESULTS: The VE against Delta infection peaked at 68% (95% confidence interval [CI]: 64-71%) and 62% (95% CI: 57-66%) in days 21-48 after the first dose among those aged 12-15 years and 16-17 years, respectively. Among those aged 16-17 years who received two doses, the VE against Delta infection peaked at 93% (95% CI: 90-95%) in days 35-62 and decreased to 84% (95% CI: 76-89%) in ≥63 days after vaccination. We did not observe a protective effect against Omicron infection after receiving one dose. Among those aged 16-17 years, the VE against Omicron infection peaked at 53% (95% CI: 43-62%) in 7-34 days after the second dose and decreased to 23% (95% CI: 3-40%) in ≥63 days after vaccination. CONCLUSION: We found a reduced protection after two BNT162b2 vaccine doses against any Omicron infection compared to Delta. Effectiveness decreased with time from vaccination for both variants. The impact of vaccination among adolescents on reducing infection and thus transmission is limited during the Omicron dominance.


Subject(s)
COVID-19 , Hepatitis D , Vaccines , Adolescent , Humans , BNT162 Vaccine , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Norway/epidemiology
5.
Front Microbiol ; 10: 2708, 2019.
Article in English | MEDLINE | ID: mdl-31824470

ABSTRACT

Extracellular vesicles secreted by Gram-negative bacteria have proven to be important in bacterial defense, communication and host-pathogen relationships. They resemble smaller versions of the bacterial mother cell, with similar contents of proteins, LPS, DNA, and RNA. Vesicles can elicit a protective immune response in a range of hosts, and as vaccine candidates, it is of interest to properly characterize their cargo. Genetic sequencing data is already available for vesicles from several bacterial strains, but it is not yet clear how the genetic makeup of vesicles differ from that of their parent cells, and which properties may characterize enriched genetic material. The present study provides evidence for DNA inside vesicles from Vibrio cholerae O395, and key characteristics of their genetic and proteomic content are compared to that of whole cells. DNA analysis reveals enrichment of fragments containing ToxR binding sites, as well as a positive correlation between AT-content and enrichment. Some mRNAs were highly enriched in the vesicle fraction, such as membrane protein genes ompV, ompK, and ompU, DNA-binding protein genes hupA, hupB, ihfB, fis, and ssb, and a negative correlation was found between mRNA enrichment and transcript length, suggesting mRNA inclusion in vesicles may be a size-dependent process. Certain non-coding and functional RNAs were found to be enriched, such as VrrA, GcvB, tmRNA, RNase P, CsrB2, and CsrB3. Mass spectrometry revealed enrichment of outer membrane proteins, known virulence factors, phage components, flagella and extracellular proteins in the vesicle fraction, and a low, negative correlation was found between transcript-, and protein enrichment. This result opposes the hypothesis that a significant degree of protein translation occurs in vesicles after budding. The abundance of viral-, and flagellar proteins in the vesicle fraction underlines the importance of purification during vesicle isolation.

6.
Int J Biol Macromol ; 103: 845-853, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28536019

ABSTRACT

The macromolecules of the bacterial cell occupy 20-40% of the total cytosol volume, and crowded environments have long been known to compact and stabilize DNA. Nevertheless, investigations on DNA-protein binding are generally performed in the absence of crowding, which may yield an incomplete understanding of how nucleoid-assembling proteins work. A family of such proteins, abundant in Gram-negative bacteria, is the histone-like nucleoid structuring proteins (H-NS). Herein, the synergistic role of macromolecular crowding (mimicked using polyethylene glycol, PEG) and H-NS was investigated using fluorescence correlation spectroscopy (FCS) and enzyme protection assays. We show that crowding enhances the binding of H-NS to the AT-rich tracks of the DNA, where it preferentially binds to, protecting these tracks towards enzyme digestion, inducing some DNA condensation, and inhibiting the biological function of DNA. We further suggest that the looping of DNA chains, induced by H-NS, contributes to the synergistic effect of DNA-binding protein and crowding agents, on DNA condensation.


Subject(s)
DNA/chemistry , Histones/metabolism , Nucleic Acid Conformation/drug effects , Polyethylene Glycols/pharmacology , Promoter Regions, Genetic/genetics
7.
PLoS One ; 11(10): e0165099, 2016.
Article in English | MEDLINE | ID: mdl-27764198

ABSTRACT

Membrane vesicles (MVs) are spherical particles naturally released from the membrane of Gram-negative bacteria. Bacterial MV production is associated with a range of phenotypes including biofilm formation, horizontal gene transfer, toxin delivery, modulation of host immune responses and virulence. This study reports comparative profiling of MVs from bacterial strains isolated from three widely disperse geographical areas. Mass spectrometry identified 119, 159 and 142 proteins in MVs from three different strains of Piscirickettsia salmonis isolated from salmonids in Chile (LF-89), Norway (NVI 5692) and Canada (NVI 5892), respectively. MV comparison revealed several strain-specific differences related to higher virulence capability for LF-89 MVs, both in vivo and in vitro, and stronger similarities between the NVI 5692 and NVI 5892 MV proteome. The MVs were similar in size and appearance as analyzed by electron microscopy and dynamic light scattering. The MVs from all three strains were internalized by both commercial and primary immune cell cultures, which suggest a potential role of the MVs in the bacterium's utilization of leukocytes. When MVs were injected into an adult zebrafish infection model, an upregulation of several pro-inflammatory genes were observed in spleen and kidney, indicating a modulating effect on the immune system. The present study is the first comparative analysis of P. salmonis derived MVs, highlighting strain-specific vesicle characteristics. The results further illustrate that the MV proteome from one bacterial strain is not representative of all bacterial strains within one species.


Subject(s)
Bacterial Proteins/metabolism , Cytoplasmic Vesicles/metabolism , Piscirickettsia/isolation & purification , Piscirickettsiaceae Infections/immunology , Proteomics/methods , Animals , Canada , Chile , Cytoplasmic Vesicles/immunology , Mass Spectrometry/methods , Norway , Piscirickettsia/metabolism , Salmonidae/microbiology , Virulence Factors/metabolism , Zebrafish/immunology , Zebrafish/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL