Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
iScience ; 27(5): 109663, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38655200

ABSTRACT

This study investigates the efficacy of proteomic analysis of human remains to identify active infections in the past through the detection of pathogens and the host response to infection. We advance leprosy as a case study due to the sequestering of sufferers in leprosaria and the suggestive skeletal lesions that can result from the disease. Here we present a sequential enzyme extraction protocol, using trypsin followed by ProAlanase, to reduce the abundance of collagen peptides and in so doing increase the detection of non-collagenous proteins. Through our study of five individuals from an 11th to 18th century leprosarium, as well as four from a contemporaneous non-leprosy associated cemetery in Barcelona, we show that samples from 2 out of 5 leprosarium individuals extracted with the sequential digestion methodology contain numerous host immune proteins associated with modern leprosy. In contrast, individuals from the non-leprosy associated cemetery and all samples extracted with a trypsin-only protocol did not. Through this study, we advance a palaeoproteomic methodology to gain insights into the health of archaeological individuals and take a step toward a proteomics-based method to study immune responses in past populations.

2.
J Proteomics ; 228: 103889, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32652221

ABSTRACT

Ancient protein analysis is providing new insights into the evolutionary relationships between hominin fossils across the Pleistocene. Protein identification commonly relies on the proteolysis of a protein extract using a single protease, trypsin. As with modern proteome studies, alternative or additional proteases have the potential to increase both proteome size and protein sequence recovery. This could enhance the recovery of phylogenetic information from ancient proteomes. Here we identify 18 novel hominin bone specimens from the Kleine Feldhofer Grotte using MALDI-TOF MS peptide mass fingerprinting of collagen type I. Next, we use one of these hominin bone specimens and three Late Pleistocene Equidae specimens identified in a similar manner and present a comparison of the bone proteome size and protein sequence recovery obtained after using nanoLC-MS/MS and parallel proteolysis using six different proteases, including trypsin. We observe that the majority of the preserved bone proteome is inaccessible to trypsin. We also observe that for proteins recovered consistently across several proteases, protein sequence coverage can be increased significantly by combining peptide identifications from two or more proteases. Our results thereby demonstrate that the proteolysis of Pleistocene proteomes by several proteases has clear advantages when addressing evolutionary questions in palaeoproteomics. SIGNIFICANCE: Maximizing proteome and protein sequence recovery of ancient skeletal proteomes is important when analyzing unique hominin fossils. As with modern proteome studies, palaeoproteomic analysis of Pleistocene bone and dentine samples has almost exclusively used trypsin as its only protease, despite the demonstrated advantages of alternative proteases to increase proteome recovery in modern proteome studies. We demonstrate that Pleistocene bone proteomes can be significantly expanded by using additional proteases beside trypsin, and that this also improves sequence coverage of individual proteins. The use of several alternative proteases beside trypsin therefore has major benefits to maximize the phylogenetic information retrieved from ancient skeletal proteomes.


Subject(s)
Proteome , Proteomics , Peptide Hydrolases , Phylogeny , Tandem Mass Spectrometry
3.
Nat Commun ; 10(1): 5520, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31848342

ABSTRACT

The rise of ancient genomics has revolutionised our understanding of human prehistory but this work depends on the availability of suitable samples. Here we present a complete ancient human genome and oral microbiome sequenced from a 5700 year-old piece of chewed birch pitch from Denmark. We sequence the human genome to an average depth of 2.3× and find that the individual who chewed the pitch was female and that she was genetically more closely related to western hunter-gatherers from mainland Europe than hunter-gatherers from central Scandinavia. We also find that she likely had dark skin, dark brown hair and blue eyes. In addition, we identify DNA fragments from several bacterial and viral taxa, including Epstein-Barr virus, as well as animal and plant DNA, which may have derived from a recent meal. The results highlight the potential of chewed birch pitch as a source of ancient DNA.


Subject(s)
Betula/physiology , DNA, Ancient/analysis , Genome, Human , Microbiota/genetics , Mouth/microbiology , Animals , DNA, Bacterial/analysis , Denmark , Geography , Humans , Phenotype , Radiometric Dating , Sex Determination Analysis , Time Factors
4.
Nat Commun ; 9(1): 4744, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30459334

ABSTRACT

The composition of ancient oral microbiomes has recently become accessible owing to advanced biomolecular methods such as metagenomics and metaproteomics, but the utility of metaproteomics for such analyses is less explored. Here, we use quantitative metaproteomics to characterize the dental calculus associated with the remains of 21 humans retrieved during the archeological excavation of the medieval (ca. 1100-1450 CE) cemetery of Tjærby, Denmark. We identify 3671 protein groups, covering 220 bacterial species and 81 genera across all medieval samples. The metaproteome profiles of bacterial and human proteins suggest two distinct groups of archeological remains corresponding to health-predisposed and oral disease-susceptible individuals, which is supported by comparison to the calculus metaproteomes of healthy living individuals. Notably, the groupings identified by metaproteomics are not apparent from the bioarchaeological analysis, illustrating that quantitative metaproteomics has the potential to provide additional levels of molecular information about the oral health status of individuals from archeological contexts.


Subject(s)
Dental Calculus/microbiology , Health Status , Oral Health , Proteomics/methods , Adult , Archaeology/methods , Bacteria/classification , Bacterial Proteins/analysis , DNA, Ancient/analysis , DNA, Bacterial/analysis , Denmark , Dental Plaque/microbiology , Dietary Proteins , Female , Humans , Male , Metagenomics/methods , Microbiota/genetics , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL