ABSTRACT
Under environmental stresses, Haematococcus pluvialis accumulates large amounts of carotenoids. Scale of carotenoid biosynthesis depends on availability of geranylgeranyl pyrophosphate (GGPP) precursor, which is supplied by GGPP synthase (GGPPS) through sequential 1'-4 condensation of three isopentenyl pyrophosphates (IPPs) into dimethylallyl pyrophosphate (DMAPP). Using IPP and DMAPP as substrates, a tri-functional HpGGPPS was identified in this study to promiscuously synthesize allylic prenyl pyrophosphates (PPPs), e.g. C10 geranyl pyrophosphate (GPP), C15 farnesyl pyrophosphate (FPP), and C20 GGPP. Intriguingly, HpGGPPS can utilize GPP or FPP as a single substrate to synthesize GGPP by hydrolyzing the allylic PPP substrate into C5 IPP. Transcription of HpGGPPS and key carotenogenesis genes, morphological transformation, and carotenoid biosynthesis were differentially induced by environmental stresses, while HpGGPPS's products were low in vivo, implying that most of PPP flux had been shunted into carotenoid biosynthesis. Hydrolyzing allylic PPP intermediates into C5 building blocks by promiscuous HpGGPPS may be a fail safe for carotenoid accumulation against environmental stress.
Subject(s)
Algal Proteins/metabolism , Chlorophyta/enzymology , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/metabolism , Carotenoids/biosynthesis , Chlorophyta/cytology , Chlorophyta/genetics , Enzyme Assays , Gene Expression Profiling , Gene Expression Regulation , Genetic Complementation Test , Hydrolysis , Kinetics , Polyisoprenyl Phosphates/metabolism , Recombinant Proteins/metabolism , Stress, Physiological , Substrate Specificity , Time FactorsABSTRACT
A central goal in marine microecology is to understand the ecological factors shaping spatiotemporal microbial patterns and the underlying processes. We hypothesized that abiotic and/or biotic interactions are probably more important for explaining the distribution patterns of marine bacterioplankton than environmental filtering. In this study, surface seawater samples were collected about 7000 miles from the Mediterranean Sea, transecting the North Atlantic Ocean, to the Brazilian marginal sea. In bacterial biosphere, SAR11, SAR86, Rhodobacteraceae, and Rhodospiriaceae were predominant in the Mediterranean Sea; Prochlorococcus was more frequent in Atlantic Ocean; whereas in the Brazilian coastal sea, the main bacterial members were Synechococcus and SAR11. With respect to archaea, Euryarchaeota were predominant in the Atlantic Ocean and Thaumarchaeota in the Mediterranean Sea. With respect to the eukaryotes, Syndiniales, Spumellaria, Cryomonadida, and Chlorodendrales were predominant in the open ocean, while diatoms and microzooplankton were dominant in the coastal sea. Distinct clusters of prokaryotes and eukaryotes displayed clear spatial heterogeneity. Among the environmental parameters measured, temperature and salinity were key factors controlling bacterial and archaeal community structure, respectively, whereas N/P/Si contributed to eukaryotic variation. The relative contribution of environmental parameters to the microbial distribution pattern was 45.2%. Interaction analysis showed that Gammaproteobacteria, Alphaproteobacteria, and Flavobacteriia were the keystone taxa within the positive-correlation network, while Thermoplasmata was the main contributor in the negative-correlation network. Our study demonstrated that microbial communities are co-governed by environmental filtering and biotic interactions, which are the main deterministic driving factors modulating the spatiotemporal patterns of marine plankton synergistically at the regional or global levels.
Subject(s)
Archaea/isolation & purification , Bacteria/isolation & purification , Biodiversity , Seawater/microbiology , Archaea/classification , Archaea/genetics , Archaea/growth & development , Atlantic Ocean , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , Brazil , Mediterranean Sea , Phylogeny , Seawater/chemistryABSTRACT
Some key carotenogenic genes (crts) in Dunaliella bardawil are regulated in response to salt stress partly due to salt-inducible cis-acting elements in their promoters. Thus, we isolated and compared the ζ-carotene desaturase (Dbzds) promoter with other crts promoters including phytoene synthase (Dbpsy), phytoene desaturase (Dbpds), and lycopene ß-cyclase1 (DblycB1) to identify salt-inducible element(s) in the Dbzds promoter. In silico analysis of the Dbzds promoter found several potential cis-acting elements, such as abscisic acid response element-like sequence, myelocytomatosis oncogene1 recognition motif, AGC box, anaerobic motif2, and activation sequence factor1 binding site. Remarkably, instead of salt-inducible elements, we found a unique regulatory sequence architecture in the Dbzds promoter: a hypoosmolarity-responsive element (HRE) candidate followed by a potential hypoosmolarity-inducible factor GBF5 binding site. Deletion experiments demonstrated that only HRE, but not the GBF5 binding site, is responsible for hypoosmotic expression of the fusion of Zeocin resistance gene (ble) to the enhanced green fluorescent protein (egfp) chimeric gene under salt stress. Dbzds transcripts were in accordance with those of ble-egfp driven by the wild-type Dbzds promoter. Consequently, Dbzds is hypoosmotically regulated by its promoter, and HRE is responsible for this hypoosmotic response. Finally, the hypoosmolarity mechanism of Dbzds was studied by comparing transcript profiles and regulatory elements of Dbzds with those of Dbpsy, Dbpds, DblycB1, and DblycB2, revealing that different induction characteristics of crts may correlate with regulatory sequence architecture.
Subject(s)
Carotenoids/genetics , Chlorophyta/enzymology , Chlorophyta/genetics , Genes, Plant , Osmosis , Oxidoreductases/genetics , Response Elements/genetics , Base Sequence , Biosynthetic Pathways/genetics , Carotenoids/biosynthesis , Carotenoids/chemistry , Chlorophyta/drug effects , Chlorophyta/growth & development , Gene Expression Regulation, Plant , Molecular Sequence Data , Nitrates/metabolism , Osmolar Concentration , Oxidoreductases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sodium Chloride/pharmacology , Stress, Physiological/drug effects , Stress, Physiological/geneticsABSTRACT
(1) Background: Oxygen has exerted a great effect in shaping the environment and driving biological diversity in Earth's history. Green lineage has evolved primary and secondary carotenoid biosynthetic systems to adapt to Earth's oxygenation, e.g., Haematococcus lacustris, which accumulates the highest amount of secondary astaxanthin under stresses. The two systems are controlled by lycopene ε-cyclase (LCYE) and ß-cyclase (LCYB), which leave an important trace in Earth's oxygenation. (2) Objectives: This work intends to disclose the underlying molecular evolutionary mechanism of Earth's oxygenation in shaping green algal carotenogensis with a special focus on lycopene cyclases. (3) Methods: The two kinds of cyclases were analyzed by site-directed mutagenesis, phylogeny, divergence time and functional divergence. (4) Results: Green lineage LCYEs appeared at ~1.5 Ga after the first significant appearance and accumulation of atmospheric oxygen, the so-called Great Oxygenation Event (GOE), from which LCYBs diverged by gene duplication. Bacterial ß-bicyclases evolved from ß-monocyclase. Enhanced catalytic activity accompanied evolutionary transformation from ε-/ß-monocyclase to ß-bicyclase. Strong positive selection occurred in green lineage LCYEs after the GOE and in algal LCYBs during the second oxidation, the Neoproterozoic Oxygenation Event (NOE). Positively selected sites in the catalytic cavities of the enzymes controlled the mono-/bicyclase activity, respectively. Carotenoid profiling revealed that oxidative adaptation has been wildly preserved in evolution. (5) Conclusions: the functionalization of the two enzymes is a result of primary to secondary adaptations to Earth's oxygenation.
ABSTRACT
MOTIVATION: Previous researches showed that phytoene synthase (Psy) from Dunaliella bardawil is the first regulatory point in carotenogenesis. We hypothesize certain interactions between the environmental stress factors and the regulatory sequences of Psy in D.bardawil (DbPsy). Consequently, LA PCR-based genomic walking approach was performed for isolation of psy promoter and terminator, respectively. The obtained nucleic acid sequences and the corresponding protein structure of DbPsy were analyzed and predicted using various bioinformatics tools. Finally, we presented some hints for the regulation mechanisms of DbPsy at the molecular level according to the computed results. RESULTS: LA PCR-based genomic walking results showed that the isolated sequences are the promoter and terminator of psy, correspondingly. Computational analysis demonstrated several candidate motifs of the promoter exhibiting hypothetic UV-B-, norglurzon- and salt-induced characteristics, as well as some typical domains universally discovered in promoter sequences, such as TATA-box, CCAAT-box and GATA-box, etc. Furthermore, the structure of Psy was also predicted and aligned along with many counterparts at the protein level. Low homology of N-terminus was found in D.bardawil, while a relatively conserved C-terminus was predicted to be involved in the catalytic activity and substrate recognization/binding. Phylogenic analysis classified the DbPsy into a cluster with other algae. These results implied that Psy may share similar regulation mechanisms among algae with respect to their C-termini; while the diversity in N-terminus among Psys, along with the predicted inducible motifs in psy promoter from D.bardawil, may confer the fine tuning differences between D.bardawil and other algae. CONCLUSION: By means of computer techniques, we found in D.barawali that two interesting conserved motifs of psy promoter may involve in UV-B, norglurzon and salt regulation correspondingly; and that the diversity of Psy protein mainly lies in the N-termini among algae. These results indicate some hints for regulation mechanisms of carotenogenesis in D.bradawil. CONTACT: jgjiang@scut.edu.cn.
Subject(s)
Alkyl and Aryl Transferases/genetics , Chlorophyta/genetics , Plant Proteins/genetics , Promoter Regions, Genetic , Alkyl and Aryl Transferases/chemistry , Amino Acid Sequence , Carotenoids/biosynthesis , Chlorophyta/metabolism , DNA, Complementary/chemistry , Gene Expression Regulation, Plant , Geranylgeranyl-Diphosphate Geranylgeranyltransferase , Molecular Sequence Data , Phylogeny , Plant Proteins/chemistry , Reverse Transcriptase Polymerase Chain Reaction , Terminator Regions, GeneticABSTRACT
A RelA/SpoT homolog, HpRSH, was identified in Haematococcus pluvialis. HpRSH was found to catalyze Mg2+-dependent guanosine tetraphosphate (ppGpp) synthesis and Mn2+-dependent ppGpp hydrolysis, respectively. The transcription of HpRSH was significantly upregulated by environmental stresses, such as darkness, high light, nitrogen limitation, and salinity stress. The intracellular ppGpp level was also increased when exposed to these stresses. In addition, the classical initiator of stringent response, serine hydroxamate (SHX), was found to upregulate the transcription of HpRSH and increase the level of ppGpp. Moreover, stringent response induced by SHX or environmental stresses was proven to induce the accumulation of astaxanthin. These results indicated that stringent response regulatory system involved in the regulation of astaxanthin biosynthesis in H. pluvialis. Furthermore, stringent response was unable to induce astaxanthin accumulation under dark condition. This result implied that stringent response may regulate astaxanthin biosynthesis in a light-dependent manner.
ABSTRACT
Cyanobacterial blooms are serious environmental issues in global freshwater ecosystems. Nitrogen limitation is one of the most important strategies to control cyanobacterial blooms. However, recent researches showed that N limitation does not effectively control the bloom; oppositely, N limitation induces N-fixing cyanobacterial blooms. The mechanism underlying this ecological event is elusive. In this study, we found that N limitation enhances stress tolerance of Microcystis aeruginosa by triggering stringent response (SR), one of the most important bacterial adaptive responses to environmental stresses. Initiation of SR exerted protective effects on the cells against salt and oxidative stresses by promoting colony formation, maintaining membrane integrity, increasing photosynthetic performance, reducing ROS production, upregulating stress-related genes, etc. These protections possibly help M. aeruginosa maintain their population number during seasonal N limitation. As SR has been proven to be involved in nitrogen fixing under N limitation conditions, the potential role of SR in driving the shift and succession of cyanobacterial blooms was discussed. Our findings provide cellular evidence and possible mechanisms that reducing N input is ineffective for bloom control.
ABSTRACT
Elucidating the interactions between algae and associated microbial communities is critical for understanding the mechanisms that mediate the dynamic of harmful algal blooms (HABs) in marine environment. However, the microbial functional profiles and their biogeochemical potential in HABs process remains elusive, especially during a complete natural HAB cycle. Here, we used pyrosequencing and functional gene array (GeoChip) to investigate microbial community dynamics and metabolic potential during a natural dinoflagellate (Noctiluca scintillans) bloom. The results shown that bacterioplankton exhibited significant temporal heterogeneity over the course of the bloom stages. Microbial succession was co-driven by environmental parameters and biotic interactions. The functional analysis revealed significant variations in microbial metabolism during matter cycling. At bloom onset-stage, metabolic potential associated with iron oxidation and transport was elevated. Carbon fixation and degradation, denitrification, phosphorus acquisition, and sulfur transfer/oxidation were significantly enhanced at the plateau stage. During the decline and terminal stages, oxidative stress, lysis of compounds, and toxin degradation & protease synthesis increased. This work reveal phycosphere microorganisms can enhanced organic C decomposition capacity, altered N assimilation rate and S/P turnover efficiency, and balancing of the Fe budget during HAB process. The ecological linkage analysis has further shown that microbial composition and functional potential were significantly linked to algal blooms occurrence. It suggest that structural variability and functional plasticity of microbial communities influence HAB trajectory.
Subject(s)
Dinoflagellida , Microbiota , Aquatic Organisms , Harmful Algal Bloom , PhosphorusABSTRACT
Isoprenoid diphosphates are important precursors actively participating in many downstream metabolisms; they are often in modified forms, e.g., protein-coupled or esterified form. Therefore, in vivo level of free isoprenoid diphosphates is quite low, Ë0.07 nmol/g fresh weight in plants. In order to directly measure the isoprenoid diphosphate pool during stress-induced accumulation of astaxanthin in Haematococcus pluvialis, the present study optimized several pretreatment procedures to enrich free isoprenoid diphosphates for high-pressure liquid chromatography with tandem mass spectrometry (HPLC-MS/MS) detection. Specifically, different extraction solvents, e.g., water, methanol, chloroform, and mixture of water, methanol, and chloroform (1:1:1, V/V/V), and solid phase extraction (SPE) columns (OASIS@ WAX and HLB Cartridges) were compared; and gentle decoupling by NaOH or trifluoroacetic acid (TFA) was introduced to release free isoprenoid diphosphates. Results found that solvent mixture of water, methanol and chloroform (1:1:1, V/V/V) showed the highest extraction efficiency (RE) for five isoprenoid diphosphates, ranging from 76.83% to 92.43%; HLB column showed the balanced recoveries ranging from 75.29% to 87.54%; and incubation with low NaOH (Ë4.7 mmol/L) at 4 °C significantly increased detectable isoprenoid diphosphates in algal cells, some of which were undetectable or in trace level before NaOH decoupling. The method was applied to H. pluvialis cells under various stresses. Low levels of isoprenoid diphosphates were determined in most of the stresses used, e.g., 0.19 ± 0.09 to 0.98 ± 0.06 mg/g fresh weight (FW) for IPP/DMAPP, 0.35 ± 0.07 mg/g FW for GGPP and undetectable for FPP and GPP; while isoprenoid diphosphates were significantly accumulated in the dark to 3.27 ± 0.05, 0.17 ± 0.09, 1.81 ± 0.16 and 0.58 ± 0.07 mg/g FW for IPP/DMAPP, GPP, FPP and GGPP, respectively. These results implied that isoprenoid diphosphates were exhausted by downstream carotenogenesis under stress. Our work emphasizes NaOH decoupling for exact quantitation of in vivo isoprenoid diphosphates.
Subject(s)
Chemistry Techniques, Analytical/methods , Chlorophyceae/chemistry , Chromatography, Liquid , Polyisoprenyl Phosphates/analysis , Solid Phase Extraction , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Polyisoprenyl Phosphates/isolation & purification , Solvents/chemistry , Terpenes/analysis , Trifluoroacetic Acid/analysisABSTRACT
A fast and facile hydrophilic interaction liquid chromatography (HILIC) method was developed and applied to quantify physiologically important ppGpp and its analogues in a tough sample, the astaxanthin-accumulating alga Hameatococcus pluvialis. The method is able to analyze simultaneously seven nucleotides, including ppGpp at the order of pmolâ¯g-1 cells within 12â¯min. Mechanism on the elution order was investigated. It was found that 1) phosphate salt competed for the amide groups on the HILIC column with the phosphate groups of the nucleotides; 2) intramolecular hydrogen bonds might contribute to the elution order by offsetting and reducing the number of free hydrogen acceptor/donor of the nucleotide molecules interacting with the amide groups. This is the first HILIC method for ppGpp, which is feasible and applicable to a wide range of samples, especially tough samples, e.g., algae and plants.
Subject(s)
Chromatography, High Pressure Liquid/methods , Guanosine Tetraphosphate/analysis , Volvocida/chemistry , Acetonitriles , Guanosine Tetraphosphate/chemistry , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Reproducibility of ResultsABSTRACT
The mitigation of biofouling has received significant research attention, with particular focus on non-toxic and sustainable strategies. Here, we investigated quorum sensing inhibitor (QSI) bacteria as a means of controlling biofouling in a laboratory-scale system. Approximately, 200 strains were isolated from coral (Pocillopora damicornis) and screened for their ability to inhibit quorum sensing (QS). Approximately, 15% of the isolates exhibited QSI activity, and a typical coral symbiotic bacterium, H12-Vibrio alginolyticus, was selected in order for us to investigate quorum sensing inhibitory activity further. Confocal microscopy revealed that V. alginolyticus extract inhibited biofilm formation from Pseudomonas aeruginosa PAO1. In addition, the secondary metabolites of V. alginolyticus inhibited PAO1 virulence phenotypes by downregulating motility ability, elastase activity and rhamnolipid production. NMR and MS spectrometry suggested that the potential bioactive compound involved was rhodamine isothiocyanate. Quantitative real-time PCR indicated that the bacterial extract induced a significant downregulation of QS regulatory genes (lasB, lasI, lasR, rhlI, rhlR) and virulence-related genes (pqsA, pqsR). The possible mechanism underlying the action of rhodamine isothiocyanate analogue involves the disruption of the las and/or rhl system of PAO1. Our results highlight coral microbes as a bioresource pool for developing QS inhibitors and identifying novel antifouling agents.
Subject(s)
Anthozoa/microbiology , Anti-Bacterial Agents/pharmacology , Bacteria/chemistry , Biofilms/drug effects , Pseudomonas aeruginosa/drug effects , Animals , Anthozoa/physiology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Bacteria/classification , Bacteria/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofouling , Pseudomonas aeruginosa/pathogenicity , Pseudomonas aeruginosa/physiology , Quorum Sensing , Symbiosis , VirulenceABSTRACT
A simple ultra-high-pressure liquid chromatography (UHPLC) method for rapidly and simultaneously identifying thirteen carotenoids in Haematococcus pluvialis was developed in this study. The method is capable of effectively separating two astaxanthin isomers, two ζ-carotene isomers, and three phytoene isomers on two simple C18 columns within 9 and 12min only by using methanol and acetonitrile, respectively. To our best knowledge, this is the rapidest method for these carotenoid isomers, currently. Using this method, carotenoid profiling in the astaxanthin-accumulating H. pluvialis under environmental stresses was successfully carried out. Results indicated that carotenoid biosynthesis was differentially perturbed by environmental stresses, indicating that this simple and rapid method is suitable to not only bacterial but also algal samples, with potential applications for a wide range of samples from plant to animal. Finally, possible reasons for the elution order of carotenoids were studied.
Subject(s)
Carotenoids/analysis , Chlorophyta/metabolism , Chromatography, High Pressure Liquid/methods , Calibration , Carotenoids/biosynthesis , Carotenoids/chemistry , Limit of Detection , Reference Standards , Xanthophylls/metabolismABSTRACT
Providencia sneebia strain ST1 is a symbiotic bacterium (belonging to phylum gammaproteobacteria) with marine microalgae. This bacterium exhibits the ability to produce N-Acyl homoserine lactone signal molecule. To date, no genome that originates from marine Providencia spp. has been reported. In this study, we present the genome sequence of this strain. It has a genome size of 4.89 M, with 19 contigs and an average G+C of 51.97%. The function of 4,631 proteins was predicted, and 3,652 proteins were assigned to COG functional categories. Among them, 407 genes are involved in carbohydrate metabolism, 306 genes participate in nitrogen utilization and energy conversion, and 185 genes related to signal transduction process. Thus, this strain plays an active role in the biogeochemical cycle in algal life history. The whole-genome of this isolate and annotation will help enhance understanding of bacterial ecological behavior in the phycosphere.
ABSTRACT
Phycosphere environment is a typical marine niche, harbor diverse populations of microorganisms, which are thought to play a critical role in algae host and influence mutualistic and competitive interactions. Understanding quorum sensing-based acyl-homoserine lactone (AHL) language may shed light on the interaction between algal-associated microbial communities in the native environment. In this work, we isolated an epidermal bacterium (was tentatively named Enterobacter sp. ST3, and deposited in SOA China, the number is MCCC1K02277-ST3) from the marine dinoflagellate Scrippsiella trochoidea, and found it has the ability to produce short-chain AHL signal. In order to better understand its communication information at molecular level, the genomic map was investigated. The genome size was determined to be 4.81 Mb with a G + C content of 55.59%, comprising 6 scaffolds of 75 contigs containing 4647 protein-coding genes. The functional proteins were predicted, and 3534 proteins were assigned to COG functional categories. An AHL-relating gene, LuxR, was found in upstream position at contig 1. This genome data may provide clues to increase understanding of the chemical characterization and ecological behavior of strain ST3 in the phycosphere microenvironment.
ABSTRACT
A complementary DNA (cDNA) of nitrate reductase (NR) from Dunaliella bardawil was isolated using RT-PCR and RACEs techniques. The full-length D. bardawil NR (DbNR) cDNA is 3,107 bp containing a putative open reading frame of 2,670 bp in length which encodes 889 amino acids with a calculated molecular weight (MW) of 98.37 kDa, a 34-bp 5'-untranslated region, and a 3'-untranslated region of 403 bp with a poly (A) tail. BLAST search showed that the nucleotide and putative protein sequence exhibit sequence identities of 92 and 79% with the corresponding gene from Dunaliella tertiolecta, respectively. Protein structural analysis showed a typical NR structure of DbNR with five structural distinctive domains which form three common subparts of eukaryotic NR (Euk-NR). Phylogenetic analysis based on the holo-DbNR and sulfite oxidase (SO) and cytochrome b reductase (CbR) subparts manifested that (1) DbNR has a closer relationship with those counterparts from algae and higher plants than from other species and (2) DbNR might have evolved from ancient SO and CbR in a "domain shuffling" pattern. The glycerol contents and transcriptional expression patterns of DbNR under salt stress and dilution shock treatments were also traced. The results implied an indirect role of NaCl on the induction of DbNR through an osmoregulation pathway.
Subject(s)
Gene Expression Regulation, Plant , Nitrate Reductase/genetics , Nitrate Reductase/metabolism , Osmotic Pressure , Volvocida/enzymology , Volvocida/genetics , Amino Acid Sequence , Cell Proliferation/drug effects , Computational Biology , Dose-Response Relationship, Drug , Evolution, Molecular , Gene Expression Regulation, Plant/drug effects , Holoenzymes/chemistry , Holoenzymes/genetics , Holoenzymes/metabolism , Models, Molecular , Molecular Sequence Data , Nitrate Reductase/chemistry , Osmotic Pressure/drug effects , Phylogeny , Protein Conformation , Sequence Alignment , Sodium Chloride/pharmacology , Stress, Physiological/drug effects , Transcription, Genetic/drug effects , Volvocida/cytology , Volvocida/drug effectsABSTRACT
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a well-known proverbial protein involved in various functions in vivo. The functional diversity of GAPDH from Dunaliella bardawil (DbGAPDH) may relate to the regulatory elements lying in the promoter at the transcriptional level. Using RT-PCR and RACE reactions, gapdh cDNA was isolated, and the full-length genomic sequence was obtained by LA-PCR-based genome walking. The full-length cDNA sequence was 1645 bp containing an 1128 bp putative open reading frame (ORF), which coded a 375 amino acids-deduced polypeptide whose molecular weight was 40.27 kDa computationally. Protein conserved domain search and structural computation found that DbGAPDH consists of two structural conserved domains highly homologous in most species; multiple sequence alignment discovered two positive charge residues (Lys164 and Arg 233), which play a critical role in the protein-protein interaction between GAPDH, phosphoribulokinase (PRK), and CP12. Phylogenetic analysis demonstrated that DbGAPDH has a closer relationship with analogues from algae and higher plants than with those from other species. In silico analysis of the promoter region revealed six potential regulatory elements might be involved in four hypothesized functions characterized by chloroplast GAPDH: oxygen-, light-, pathogen-, and cold-induced regulation. These results might supply some hints for the functional diversity mechanisms of DbGAPDH, and fresh information for further research to bridge the gap between our knowledge of DNA and protein structure and our understanding of functional biology in GAPDH regulation.
Subject(s)
Chlorophyta/genetics , Chloroplasts/enzymology , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Promoter Regions, Genetic , Amino Acid Sequence , Chlorophyta/chemistry , Chlorophyta/classification , Chlorophyta/metabolism , Chloroplasts/chemistry , Chloroplasts/genetics , Glyceraldehyde-3-Phosphate Dehydrogenases/chemistry , Molecular Sequence Data , Phylogeny , Regulatory Sequences, Nucleic Acid , Sequence AlignmentABSTRACT
Glycerol-3-phosphate dehydrogenase (G3pdh) is a key enzyme in the pathway of glycerol synthesis, which converts dihydroxyacetone phosphate (DHAP) to glycerol-3-phosphate. In this study, the effects of salinity changes on variation of cell shape and single cell glycerol content of Dunaliella salina were observed, and the effects of salinity changes on the gene expressions of a (NAD+)-dependent G3pdh (EC1.1.1.8) among G3pdh isozymes in D. salina were detected by real-time quantitative PCR. Results showed that the changes of shape and volume of D. salina cell cultured chronically at various salinities were minor, but when the salinity was changed rapidly, the variations of cell shape and cell volume of D. salina were significant, which were recovered basically after 2h except treating by high salinity. Also, it was found some lipid globules in the surface of D. salina cells when the salinity increased from 2.0 to 4.0-5.0 M NaCl rapidly. When D. salina was cultured chronically at various salinities, the accumulation of single cell glycerol increased with increased salinity, and D. salina also could rapidly decrease or increase single cell glycerol contents to adapt to hypoosmotic or hyperosmotic shock. The expression level of G3pdh in D. salina grown at various salinities was significantly inversely correlated to the salinity, but there was no significant correlation between the expression level of G3pdh and salinity after 2 h of treatment by hyperosmotic or hypoosmotic shock.
Subject(s)
Gene Expression/drug effects , Glycerol-3-Phosphate Dehydrogenase (NAD+)/genetics , Salinity , Sodium Chloride/toxicity , Volvocida/genetics , Water Pollutants, Chemical/toxicity , Cell Shape/drug effects , Cell Survival/drug effects , Glycerol-3-Phosphate Dehydrogenase (NAD+)/metabolism , Stress, Physiological , Volvocida/drug effects , Volvocida/physiology , Water-Electrolyte Balance/geneticsABSTRACT
In the recent years, a wide range of metabonomic analytical techniques are widely used in the modern research of traditional Chinese medicine (TCM). At the same time, the international community has attached increasing importance to TCM toxicity problems. Thus, many studies have been implemented to investigate the toxicity mechanisms of TCM. Among these studies, many metabonomic-based methods have been implemented to facilitate TCM toxicity investigation. At present, the most prevailing methods for TCM toxicity research are mainly single analysis techniques using only one analytical means. These techniques include nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS), etc.; with these techniques, some favourable outcomes have been gained in the toxic reaction studies of TCM, such as the action target organs assay, the establishment of action pattern, the elucidation of action mechanism and the exploration of action material foundation. However, every analytical technique has its advantages and drawbacks, no existing analytical technique can be versatile. Multi-analysed techniques can partially overcome the shortcomings of single-analysed techniques. Combination of GC-MS and LC-MS metabolic profiling approaches has unravelled the pathological outcomes of aristolochic acid-induced nephrotoxicity, which can not be achieved by single-analysed techniques. It is believed that with the further development of metabonomic analytical techniques, especially multi-analysed techniques, metabonomics will greatly promote TCM toxicity research and be beneficial to the modernization of TCM in terms of extending the application of modern means in the TCM safety assessment, assisting the formulation of TCM safety norms and establishing the international standards indicators.