Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
J Hered ; 107(2): 134-42, 2016 03.
Article in English | MEDLINE | ID: mdl-26610365

ABSTRACT

A variety of nonrandom mate choice strategies, including disassortative mating, are used by vertebrate species to avoid inbreeding, maintain heterozygosity and increase fitness. Disassortative mating may be mediated by the major histocompatibility complex (MHC), an important gene cluster controlling immune responses to pathogens. We investigated the patterns of mate choice in 26 wild-living breeding pairs of gray wolf (Canis lupus) that were identified through noninvasive genetic methods and genotyped at 3 MHC class II and 12 autosomal microsatellite (STR) loci. We tested for deviations from random mating and evaluated the covariance of genetic variables at functional and STR markers with fitness proxies deduced from pedigree reconstructions. Results did not show evidences of MHC-based disassortative mating. Rather we found a higher peptide similarity between mates at MHC loci as compared with random expectations. Fitness values were positively correlated with heterozygosity of the breeders at both MHC and STR loci, whereas they decreased with relatedness at STRs. These findings may indicate fitness advantages for breeders that, while avoiding highly related mates, are more similar at the MHC and have high levels of heterozygosity overall. Such a pattern of MHC-assortative mating may reflect local coadaptation of the breeders, while a reduction in genetic diversity may be balanced by heterozygote advantages.


Subject(s)
Genetic Fitness , Genetic Variation , Major Histocompatibility Complex/genetics , Mating Preference, Animal , Wolves/genetics , Alleles , Animals , Genetics, Population , Genotype , Heterozygote , Italy , Microsatellite Repeats , Models, Genetic , Reproduction/genetics , Wolves/physiology
2.
J Hered ; 104(5): 601-12, 2013.
Article in English | MEDLINE | ID: mdl-23885092

ABSTRACT

Small, isolated populations may experience increased extinction risk due to reduced genetic variability at important functional genes, thus decreasing the population's adaptive potential. The major histocompatibility complex (MHC), a key immunological gene cluster, usually shows high variability maintained by positive or balancing selection in response to challenges by pathogens. Here we investigated for the first time, the variability of 3 MHC class II genes (DRB1, DQA1, and DQB1) in 94 samples collected from Italian wolves. The Italian wolf population has been long isolated south of the Alps and is presently recovering from a recent bottleneck that decreased the population to less than 100 individuals. Despite the bottleneck, Italian wolves show remarkable MHC variability with 6-9 alleles per locus, including 2 recently described alleles at DRB1. MHC sequences show signatures of historical selective pressures (high d N/d S ratio, ω > 1.74) but no evidence of ongoing selection. Variation at the MHC genes and 12 background microsatellite loci were not apparently affected by the recent bottleneck. Although MHC alleles of domestic dog origin were detected in 8 genetically admixed individuals, these alleles were rare or absent in nonadmixed wolves. Thus, despite known hybridization events between domestic dogs and Italian wolves, the Italian wolf population does not appear affected by deep introgression of domestic dog MHC alleles.


Subject(s)
HLA-DQ alpha-Chains/genetics , HLA-DQ beta-Chains/genetics , HLA-DRB1 Chains/genetics , Sequence Analysis, DNA/veterinary , Wolves/genetics , Alleles , Animals , Base Sequence , Dogs/genetics , Female , Gene Frequency , Genetic Variation , Genetics, Population , Genotype , Italy , Major Histocompatibility Complex/genetics , Male , Microsatellite Repeats/genetics , Selection, Genetic
3.
R Soc Open Sci ; 2(12): 150450, 2015 Dec.
Article in English | MEDLINE | ID: mdl-27019731

ABSTRACT

Interspecific hybridization is relatively frequent in nature and numerous cases of hybridization between wild canids and domestic dogs have been recorded. However, hybrids between golden jackals (Canis aureus) and other canids have not been described before. In this study, we combined the use of biparental (15 autosomal microsatellites and three major histocompatibility complex (MHC) loci) and uniparental (mtDNA control region and a Y-linked Zfy intron) genetic markers to assess the admixed origin of three wild-living canids showing anomalous phenotypic traits. Results indicated that these canids were hybrids between golden jackals and domestic dogs. One of them was a backcross to jackal and another one was a backcross to dog, confirming that golden jackal-domestic dog hybrids are fertile. The uniparental markers showed that the direction of hybridization, namely females of the wild species hybridizing with male domestic dogs, was common to most cases of canid hybridization. A melanistic 3bp-deletion at the K locus (ß-defensin CDB103 gene), that was absent in reference golden jackal samples, but was found in a backcross to jackal with anomalous black coat, suggested its introgression from dogs via hybridization. Moreover, we demonstrated that MHC sequences, although rarely used as markers of hybridization, can be also suitable for the identification of hybrids, as long as haplotypes are exclusive for the parental species.

SELECTION OF CITATIONS
SEARCH DETAIL