Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
Add more filters

Publication year range
1.
BMC Genomics ; 25(1): 482, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38750426

ABSTRACT

BACKGROUND: The severity of COVID-19 is influenced by various factors including the presence of respiratory diseases. Studies have indicated a potential relationship between asthma and COVID-19 severity. OBJECTIVE: This study aimed to conduct a genome-wide association study (GWAS) to identify genetic and clinical variants associated with the severity of COVID-19, both among patients with and without asthma. METHODS: We analyzed data from 2131 samples sourced from the Biobanque québécoise de la COVID-19 (BQC19), with 1499 samples from patients who tested positive for COVID-19. Among these, 1110 exhibited mild-to-moderate symptoms, 389 had severe symptoms, and 58 had asthma. We conducted a comparative analysis of clinical data from individuals in these three groups and GWAS using a logistic regression model. Phenotypic data analysis resulted in the refined covariates integrated into logistic models for genetic studies. RESULTS: Considering a significance threshold of 1 × 10-6, seven genetic variants were associated with severe COVID-19. These variants were located proximal to five genes: sodium voltage-gated channel alpha subunit 1 (SCN10A), desmoplakin (DSP), RP1 axonemal microtubule associated (RP1), IGF like family member 1 (IGFL1), and docking protein 5 (DOK5). The GWAS comparing individuals with severe COVID-19 with asthma to those without asthma revealed four genetic variants in transmembrane protein with EGF like and two follistatin like domains 2 (TMEFF2) and huntingtin interacting protein-1 (HIP1) genes. CONCLUSION: This study provides significant insights into the genetic profiles of patients with severe forms of the disease, whether accompanied by asthma or not. These findings enhance our comprehension of the genetic factors that affect COVID-19 severity. KEY MESSAGES: Seven genetic variants were associated with the severe form of COVID-19; Four genetic variants were associated with the severe form of COVID-19 in individuals with comorbid asthma; These findings help define the genetic component of the severe form of COVID-19 in relation to asthma as a comorbidity.


Subject(s)
Asthma , COVID-19 , Comorbidity , Genome-Wide Association Study , SARS-CoV-2 , Humans , COVID-19/genetics , Asthma/genetics , Asthma/complications , Male , Female , Middle Aged , SARS-CoV-2/genetics , Adult , Severity of Illness Index , Cohort Studies , Polymorphism, Single Nucleotide , Aged , Genomics/methods , Genetic Predisposition to Disease
2.
Bioinformatics ; 39(3)2023 03 01.
Article in English | MEDLINE | ID: mdl-36929931

ABSTRACT

SUMMARY: Founder populations with deep genealogical data are well suited for investigating genetic variants contributing to diseases. Here, we present a major update of the genealogical analysis R package GENLIB, centered around a new function which can simulate the transmission of haplotypes from founders to probands along very large and complex user-specified genealogies. AVAILABILITY AND IMPLEMENTATION: The latest update of the GENLIB package (v1.1.9) contains the new gen.simuHaplo() function and is available on the CRAN repository and from https://github.com/R-GENLIB/GENLIB. Examples can be accessed at https://github.com/R-GENLIB/simuhaplo_functions.


Subject(s)
Population Groups , Software , Humans , Haplotypes
3.
Int J Mol Sci ; 25(17)2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39273442

ABSTRACT

Epidermolysis bullosa (EB) is a clinically and genetically heterogeneous group of mechanobullous diseases characterized by non-scarring blisters and erosions on the skin and mucous membranes upon mechanical trauma. The simplex form (EBS) is characterized by recurrent blister formation within the basal layer of the epidermis. It most often results from dominant mutations in the genes coding for keratin (K) 5 or 14 proteins (KRT5 and KRT14). A disruptive mutation in KRT5 or KRT14 will not only structurally impair the cytoskeleton, but it will also activate a cascade of biochemical mechanisms contributing to EBS. Skin lesions are painful and disfiguring and have a significant impact on life quality. Several gene expression studies were accomplished on mouse model and human keratinocytes to define the gene expression signature of EBS. Several key genes associated with EBS were identified as specific immunological mediators, keratins, and cell junction components. These data deepened the understanding of the EBS pathophysiology and revealed important functional biological processes, particularly inflammation. This review emphasizes the three EBS subtypes caused by dominant mutations on either KRT5 or KRT14 (localized, intermediate, and severe). It aims to summarize current knowledge about the EBS expression profiling pattern and predicted molecular mechanisms involved and to outline progress in therapy.


Subject(s)
Epidermolysis Bullosa Simplex , Keratin-14 , Keratin-5 , Mutation , Epidermolysis Bullosa Simplex/genetics , Epidermolysis Bullosa Simplex/pathology , Epidermolysis Bullosa Simplex/metabolism , Epidermolysis Bullosa Simplex/therapy , Humans , Animals , Keratin-5/genetics , Keratin-5/metabolism , Keratin-14/genetics , Keratin-14/metabolism , Keratinocytes/metabolism , Keratinocytes/pathology
4.
Eur Respir J ; 62(6)2023 12.
Article in English | MEDLINE | ID: mdl-37802634

ABSTRACT

BACKGROUND: The epigenetic mechanisms of asthma remain largely understudied in African Americans and Hispanics/Latinos, two populations disproportionately affected by asthma. We aimed to identify markers, regions and processes with differential patterns of DNA methylation (DNAm) in whole blood by asthma status in ethnically diverse children and youth, and to assess their functional consequences. METHODS: DNAm levels were profiled with the Infinium MethylationEPIC or HumanMethylation450 BeadChip arrays among 1226 African Americans or Hispanics/Latinos and assessed for differential methylation per asthma status at the CpG and region (differentially methylated region (DMR)) level. Novel associations were validated in blood and/or nasal epithelium from ethnically diverse children and youth. The functional and biological implications of the markers identified were investigated by combining epigenomics with transcriptomics from study participants. RESULTS: 128 CpGs and 196 DMRs were differentially methylated after multiple testing corrections, including 92.3% and 92.8% novel associations, respectively. 41 CpGs were replicated in other Hispanics/Latinos, prioritising cg17647904 (NCOR2) and cg16412914 (AXIN1) as asthma DNAm markers. Significant DNAm markers were enriched in previous associations for asthma, fractional exhaled nitric oxide, bacterial infections, immune regulation or eosinophilia. Functional annotation highlighted epigenetically regulated gene networks involved in corticosteroid response, host defence and immune regulation. Several implicated genes are targets for approved or experimental drugs, including TNNC1 and NDUFA12. Many differentially methylated loci previously associated with asthma were validated in our study. CONCLUSIONS: We report novel whole-blood DNAm markers for asthma underlying key processes of the disease pathophysiology and confirm the transferability of previous asthma DNAm associations to ethnically diverse populations.


Subject(s)
Asthma , Epigenome , Child , Humans , Adolescent , Epigenesis, Genetic , Asthma/genetics , DNA Methylation , Gene Expression Profiling , NADPH Dehydrogenase/genetics
5.
Respir Res ; 24(1): 294, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37996952

ABSTRACT

RATIONALE: Severe asthma affects a small proportion of asthmatics but represents a significant healthcare challenge. Bronchial thermoplasty (BT) is an interventional treatment approach preconized for uncontrolled severe asthma after considering biologics therapy. It was showed that BT long-lastingly improves asthma control. These improvements seem to be related to the ability of BT to reduce airway smooth muscle remodeling, reduce the number of nerve fibers and to modulate bronchial epithelium integrity and behavior. Current evidence suggest that BT downregulates epithelial mucins expression, cytokine production and metabolic profile. Despite these observations, biological mechanisms explaining asthma control improvement post-BT are still not well understood. OBJECTIVES: To assess whether BT affects gene signatures in bronchial epithelial cells (BECs). METHODS: In this study we evaluated the transcriptome of cultured bronchial epithelial cells (BECs) of severe asthmatics obtained pre- and post-BT treatment using microarrays. We further validated gene and protein expressions in BECs and in bronchial biopsies with immunohistochemistry pre- and post-BT treatment. MEASUREMENTS AND MAIN RESULTS: Transcriptomics analysis revealed that a large portion of differentially expressed genes (DEG) was involved in anti-viral response, anti-microbial response and pathogen induced cytokine storm signaling pathway. S100A gene family stood out as five members of this family where consistently downregulated post-BT. Further validation revealed that S100A7, S100A8, S100A9 and their receptor (RAGE, TLR4, CD36) expressions were highly enriched in severe asthmatic BECs. Further, these S100A family members were downregulated at the gene and protein levels in BECs and in bronchial biopsies of severe asthmatics post-BT. TLR4 and CD36 protein expression were also reduced in BECs post-BT. Thymic stromal lymphopoietin (TSLP) and human ß-defensin 2 (hBD2) were significantly decreased while no significant change was observed in IL-25 and IL-33. CONCLUSIONS: These data suggest that BT might improve asthma control by downregulating epithelial derived S100A family expression and related downstream signaling pathways.


Subject(s)
Asthma , Bronchial Thermoplasty , Humans , Thymic Stromal Lymphopoietin , Alarmins , Toll-Like Receptor 4 , Asthma/genetics , Asthma/surgery , Asthma/metabolism , Cytokines/metabolism
6.
J Allergy Clin Immunol ; 150(5): 1168-1177, 2022 11.
Article in English | MEDLINE | ID: mdl-35671886

ABSTRACT

BACKGROUND: Eosinophils play a key role in the asthma allergic response by releasing cytotoxic molecules such as eosinophil cationic protein (ECP) and eosinophil-derived neurotoxin (EDN) that generate epithelium damages. OBJECTIVE: We sought to identify genetic variants influencing ECP and EDN levels in asthma-ascertained families. METHODS: We performed univariate and bivariate genome-wide association analyses of ECP and EDN levels in 1018 subjects from the EGEA study with follow-up in 153 subjects from the Saguenay-Lac-Saint-Jean study and combined the results of these 2 studies through meta-analysis. We then conducted Bayesian statistical fine mapping together with quantitative trait locus and functional annotation analyses to identify the most likely functional genetic variants and candidate genes. RESULTS: We identified 5 genome-wide significant loci (P &lt; 5 × 10<sup>-8</sup>) including 7 distinct signals associated with ECP and/or EDN levels. The genes targeted by our fine mapping and functional search include RNASE2 and RNASE3 (14q11), which encode EDN and ECP, respectively, and 4 other genes that regulate ECP and EDN levels. These 4 genes were JAK1 (1p31), a transcription factor that plays a key role in the immune response and acts as a potential therapeutic target for eosinophilic asthma; ARHGAP25 (2p13), which is involved in leukocyte recruitment to inflammatory sites; NDUFA4 (7p21), which encodes a component of the mitochondrial respiratory chain and is involved in cellular response to stress; and CTSL (9q22), which is involved in immune response, extracellular remodeling, and allergic inflammation. CONCLUSION: Analysis of specific phenotypes produced by eosinophils allows the identification of genes that play a major role in allergic response and inflammation, and offers potential therapeutic targets for asthma.


Subject(s)
Asthma , Hypersensitivity , Humans , Eosinophils , Genome-Wide Association Study , Bayes Theorem , Eosinophil-Derived Neurotoxin/genetics , Eosinophil-Derived Neurotoxin/metabolism , Eosinophil Cationic Protein/genetics , Eosinophil Cationic Protein/metabolism , Hypersensitivity/metabolism , Inflammation/metabolism , Eosinophil Granule Proteins/genetics , Eosinophil Granule Proteins/metabolism , Blood Proteins/metabolism
7.
Clin Exp Allergy ; 52(1): 70-81, 2022 01.
Article in English | MEDLINE | ID: mdl-34155719

ABSTRACT

BACKGROUND: Numerous genes have been associated with the three most common allergic diseases (asthma, allergic rhinitis or eczema) but these genes explain only a part of the heritability. In the vast majority of genetic studies, complex phenotypes such as co-morbidity of two of these diseases, have not been considered. This may partly explain missing heritability. OBJECTIVE: To identify genetic variants specifically associated with the co-morbidity of asthma-plus-eczema. METHODS: We first conducted a meta-analysis of four GWAS (Genome-Wide Association Study) of the combined asthma-plus-eczema phenotype (total of 8807 European-ancestry subjects of whom 1208 subjects had both asthma and eczema). To assess whether the association with SNP(s) was specific to the co-morbidity, we also conducted a meta-analysis of homogeneity test of association according to disease status ("asthma-plus-eczema" vs. the presence of only one disease "asthma only or eczema only"). We then used a joint test by combining the two test statistics from the co-morbidity-SNP association and the phenotypic heterogeneity of SNP effect meta-analyses. RESULTS: Seven SNPs were detected for specific association to the asthma-plus-eczema co-morbidity, two with significant and five with suggestive evidence using the joint test after correction for multiple testing. The two significant SNPs are located in the OCA2 gene (Oculocutaneous Albinism II), a new locus never detected for significant evidence of association with any allergic disease. This gene is a promising candidate gene, because of its link to skin and lung diseases, and to epithelial barrier and immune mechanisms. CONCLUSION: Our study underlines the importance of studying sub-phenotypes as co-morbidities to detect new susceptibility genes.


Subject(s)
Albinism, Oculocutaneous , Asthma , Eczema , Rhinitis, Allergic , Asthma/epidemiology , Asthma/genetics , Comorbidity , Eczema/epidemiology , Eczema/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Membrane Transport Proteins/genetics , Morbidity , Rhinitis, Allergic/epidemiology , Rhinitis, Allergic/genetics
8.
J Med Genet ; 58(10): 653-665, 2021 10.
Article in English | MEDLINE | ID: mdl-33910931

ABSTRACT

The Saguenay-Lac-Saint-Jean (SLSJ) region located in the province of Quebec was settled in the 19th century by pioneers issued from successive migration waves starting in France in the 17th century and continuing within Quebec until the beginning of the 20th century. The genetic structure of the SLSJ population is considered to be the product of a triple founder effect and is characterised by a higher prevalence of some rare genetic diseases. Several studies were performed to elucidate the historical, demographic and genetic background of current SLSJ inhabitants to assess the origins of these rare disorders and their distribution in the population. Thanks to the development of new sequencing technologies, the genes and the variants responsible for the most prevalent conditions were identified. Combined with other resources such as the BALSAC population database, identifying the causal genes and the pathogenic variants allowed to assess the impacts of some of these founder mutations on the population health and to design precision medicine public health strategies based on carrier testing. Furthermore, it stimulated the establishment of many public programmes.We report here a review and an update of a subset of inherited disorders and founder mutations in the SLSJ region. Data were collected from published scientific sources. This work expands the knowledge about the current frequencies of these rare disorders, the frequencies of other rare genetic diseases in this population, the relevance of the carrier tests offered to the population, as well as the current available treatments and research about future therapeutic avenues for these inherited disorders.


Subject(s)
Founder Effect , Genetic Diseases, Inborn/epidemiology , Genetic Diseases, Inborn/genetics , Genetic Predisposition to Disease , France , Genes, Recessive , Genetic Background , Genetic Diseases, Inborn/diagnosis , Genetic Testing , Humans , Mass Screening , Phenotype , Prevalence , Quebec/epidemiology
9.
BMC Pulm Med ; 22(1): 155, 2022 Apr 23.
Article in English | MEDLINE | ID: mdl-35461280

ABSTRACT

BACKGROUND: Asthma, lung cancer (LC) and chronic obstructive pulmonary disease (COPD) are three respiratory diseases characterized by complex mechanisms underlying and genetic predispositions, with asthma having the highest calculated heritability. Despite efforts deployed in the last decades, only a small part of its heritability has been elucidated. It was hypothesized that shared genetic factors by these three diseases could help identify new asthma loci. METHODS: GWAS-nominated LC and COPD loci were selected among studies performed in Caucasian cohorts using the GWAS Catalog. Genetic analyses were carried out for these loci in the Saguenay-Lac-Saint-Jean (SLSJ) asthma familial cohort and then replicated in two independent cohorts (the Canadian Cohort Obstructive Lung Disease [CanCOLD] and the Epidemiological Study of the Genetics and Environment of Asthma [EGEA]). RESULTS: Analyses in the SLSJ cohort identified 2851 and 4702 genetic variants to be replicated in the CanCOLD and EGEA cohorts for LC and COPD loci respectively. Replication and meta-analyses allowed the association of one new locus with asthma, 2p24.3, from COPD studies. None was associated from LC studies reported. CONCLUSIONS: The approach used in this study contributed to better understand the heritability of asthma with shared genetic backgrounds of respiratory diseases.


Subject(s)
Asthma , Lung Neoplasms , Pulmonary Disease, Chronic Obstructive , Asthma/genetics , Canada , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Lung Neoplasms/genetics , Polymorphism, Single Nucleotide , Pulmonary Disease, Chronic Obstructive/genetics
10.
J Allergy Clin Immunol ; 147(3): 1031-1040, 2021 03.
Article in English | MEDLINE | ID: mdl-33338541

ABSTRACT

BACKGROUND: Differential DNA methylation associated with allergy might provide novel insights into the shared or unique etiology of asthma, rhinitis, and eczema. OBJECTIVE: We sought to identify DNA methylation profiles associated with childhood allergy. METHODS: Within the European Mechanisms of the Development of Allergy (MeDALL) consortium, we performed an epigenome-wide association study of whole blood DNA methylation by using a cross-sectional design. Allergy was defined as having symptoms from at least 1 allergic disease (asthma, rhinitis, or eczema) and positive serum-specific IgE to common aeroallergens. The discovery study included 219 case patients and 417 controls at age 4 years and 228 case patients and 593 controls at age 8 years from 3 birth cohorts, with replication analyses in 325 case patients and 1111 controls. We performed additional analyses on 21 replicated sites in 785 case patients and 2124 controls by allergic symptoms only from 8 cohorts, 3 of which were not previously included in analyses. RESULTS: We identified 80 differentially methylated CpG sites that showed a 1% to 3% methylation difference in the discovery phase, of which 21 (including 5 novel CpG sites) passed genome-wide significance after meta-analysis. All 21 CpG sites were also significantly differentially methylated with allergic symptoms and shared between asthma, rhinitis, and eczema. The 21 CpG sites mapped to relevant genes, including ACOT7, LMAN3, and CLDN23. All 21 CpG sties were differently methylated in asthma in isolated eosinophils, and 10 were replicated in respiratory epithelium. CONCLUSION: Reduced whole blood DNA methylation at 21 CpG sites was significantly associated with childhood allergy. The findings provide novel insights into the shared molecular mechanisms underlying asthma, rhinitis, and eczema.


Subject(s)
Asthma/genetics , CpG Islands/genetics , Eczema/genetics , Hypersensitivity/genetics , Rhinitis, Allergic/genetics , Adolescent , Child , Child, Preschool , Cohort Studies , Cross-Sectional Studies , DNA Methylation , Epigenesis, Genetic , Female , Humans , Immunoglobulin E/metabolism , Male , Transcriptome
11.
Nature ; 520(7549): 670-674, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25707804

ABSTRACT

Immunoglobulin E (IgE) is a central mediator of allergic (atopic) inflammation. Therapies directed against IgE can alleviate hay fever and allergic asthma. Genetic association studies have not yet identified novel therapeutic targets or pathways underlying IgE regulation. We therefore surveyed epigenetic associations between serum IgE concentrations and methylation at loci concentrated in CpG islands genome wide in 95 nuclear pedigrees, using DNA from peripheral blood leukocytes. We validated positive results in additional families and in subjects from the general population. Here we show replicated associations--with a meta-analysis false discovery rate less than 10(-4)--between IgE and low methylation at 36 loci. Genes annotated to these loci encode known eosinophil products, and also implicate phospholipid inflammatory mediators, specific transcription factors and mitochondrial proteins. We confirmed that methylation at these loci differed significantly in isolated eosinophils from subjects with and without asthma and high IgE levels. The top three loci accounted for 13% of IgE variation in the primary subject panel, explaining the tenfold higher variance found compared with that derived from large single-nucleotide polymorphism genome-wide association studies. This study identifies novel therapeutic targets and biomarkers for patient stratification for allergic diseases.


Subject(s)
DNA Methylation/genetics , Epigenesis, Genetic/genetics , Genetic Association Studies , Genome, Human/genetics , Immunoglobulin E/blood , Adolescent , Adult , Asthma/blood , Asthma/genetics , Child , CpG Islands/genetics , Eosinophils/cytology , Eosinophils/metabolism , Female , Humans , Inflammation Mediators , Male , Middle Aged , Mitochondrial Proteins/genetics , Pedigree , Polymorphism, Single Nucleotide/genetics , Transcription Factors/genetics , Young Adult
12.
Int J Mol Sci ; 22(16)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34445627

ABSTRACT

Epigenetics is a field of study investigating changes in gene expression that do not alter the DNA sequence. These changes are often influenced by environmental or social factors and are reversible. Epigenetic mechanisms include DNA methylation, histone modification, and noncoding RNA. Understanding the role of these epigenetic mechanisms in human diseases provides useful information with regard to disease severity and development. Several studies have searched for the epigenetic mechanisms that regulate allergies and asthma; however, only few studies have used samples of eosinophil, a proinflammatory cell type known to be largely recruited during allergic or asthmatic inflammation. Such studies would enable us to better understand the factors that influence the massive recruitment of eosinophils during allergic and asthmatic symptoms. In this review, we sought to summarize different studies that aimed to discover differential patterns of histone modifications, DNA methylation, and noncoding RNAs in eosinophil samples of individuals with certain diseases, with a particular focus on those with asthma or allergic diseases.


Subject(s)
Asthma/pathology , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation , Histone Code , Hypersensitivity/pathology , Animals , Asthma/genetics , Humans , Hypersensitivity/genetics
13.
Eur Respir J ; 56(3)2020 09.
Article in English | MEDLINE | ID: mdl-32381493

ABSTRACT

Epigenome-wide studies of methylation in children support a role for epigenetic mechanisms in asthma; however, studies in adults are rare and few have examined non-atopic asthma. We conducted the largest epigenome-wide association study (EWAS) of blood DNA methylation in adults in relation to non-atopic and atopic asthma.We measured DNA methylation in blood using the Illumina MethylationEPIC array among 2286 participants in a case-control study of current adult asthma nested within a United States agricultural cohort. Atopy was defined by serum specific immunoglobulin E (IgE). Participants were categorised as atopy without asthma (n=185), non-atopic asthma (n=673), atopic asthma (n=271), or a reference group of neither atopy nor asthma (n=1157). Analyses were conducted using logistic regression.No associations were observed with atopy without asthma. Numerous cytosine-phosphate-guanine (CpG) sites were differentially methylated in non-atopic asthma (eight at family-wise error rate (FWER) p<9×10-8, 524 at false discovery rate (FDR) less than 0.05) and implicated 382 novel genes. More CpG sites were identified in atopic asthma (181 at FWER, 1086 at FDR) and implicated 569 novel genes. 104 FDR CpG sites overlapped. 35% of CpG sites in non-atopic asthma and 91% in atopic asthma replicated in studies of whole blood, eosinophils, airway epithelium, or nasal epithelium. Implicated genes were enriched in pathways related to the nervous system or inflammation.We identified numerous, distinct differentially methylated CpG sites in non-atopic and atopic asthma. Many CpG sites from blood replicated in asthma-relevant tissues. These circulating biomarkers reflect risk and sequelae of disease, as well as implicate novel genes associated with non-atopic and atopic asthma.


Subject(s)
Asthma , Epigenome , Adult , Asthma/genetics , Case-Control Studies , Child , CpG Islands , DNA Methylation , Epigenesis, Genetic , Genome-Wide Association Study , Humans , Lung , United States
14.
Exp Dermatol ; 29(10): 961-969, 2020 10.
Article in English | MEDLINE | ID: mdl-32885477

ABSTRACT

Epidermolysis bullosa simplex (EBS) is a rare skin disease usually inherited in an autosomal dominant pattern. EBS is resulting from mutations in keratin 5 (KRT5) and keratin 14 (KRT14) genes encoding the keratins 5 and 14 proteins expressed in the keratinocytes of the basal layer of the epidermis. To date, seven pathogenic mutations have been reported to be responsible for EBS in the Canadian population from the province of Quebec: p.Pro25Leu, p.Leu150Pro, p.Met327Thr and p.Arg559X in KRT5; p.Arg125Ser, p.Ile377Thr and p.Ile412Phe in KRT14. Here, we present a novel French-Canadian patient diagnosed with EBS confined to the soles but presenting a severe complication form including blisters, hyperkeratosis, skin erosions and toenail abnormalities. Mutation screening was performed by direct sequencing of the entire coding regions of KRT5 and KRT14 genes and revealed the previously reported missense heterozygous mutation c. 1130T > C in KRT14 (p.Ile377Thr). Furthermore, this patient is carrying a second mutation in KRT5, c.413G > A (p.Gly138Glu), which has been linked to an increased risk of basal cell carcinoma in the literature. We suspect an impact of the p.Gly138Glu variant on the EBS phenotype severity of the studied patient. The pathogenicity and consequences of both genetic variations were simulated by in silico tools.


Subject(s)
Epidermolysis Bullosa Simplex/genetics , Keratin-14/genetics , Keratin-15/genetics , Computer Simulation , Epidermolysis Bullosa Simplex/pathology , Female , Foot Dermatoses/genetics , Foot Ulcer/genetics , Foot Ulcer/pathology , Hand Dermatoses/genetics , Heterozygote , Humans , Middle Aged , Mutation, Missense , Nail Diseases/genetics , Phenotype
15.
Am J Phys Anthropol ; 171(4): 645-658, 2020 04.
Article in English | MEDLINE | ID: mdl-32064591

ABSTRACT

OBJECTIVES: We describe a method to identify human remains excavated from unmarked graves in historical Québec cemeteries by combining parental-lineage genetic markers with the whole-population genealogy of Québec contained in the BALSAC database. MATERIALS AND METHODS: The remains of six men were exhumed from four historical cemeteries in the province of Québec, Canada. DNA was extracted from the remains and genotyped to reveal their mitochondrial and Y-chromosome haplotypes, which were compared to a collection of haplotypes of genealogically-anchored modern volunteers. Maternal and paternal genealogies were searched in the BALSAC genealogical record for parental couples matching the mitochondrial and the Y-chromosome haplotypic signatures, to identify candidate sons from whom the remains could have originated. RESULTS: Analysis of the matching genealogies identified the parents of one man inhumed in the cemetery of the investigated parish during its operating time. The candidate individual died in 1833 at the age of 58, a plausible age at death in light of osteological analysis of the remains. DISCUSSION: This study demonstrates the promising potential of coupling genetic information from living individuals to genealogical data in BALSAC to identify historical human remains. If genetic coverage is increased, the genealogical information in BALSAC could enable the identification of 87% of the men (n = 178,435) married in Québec before 1850, with high discriminatory power in most cases since >75% of the parental couples have unique biparental signatures in most regions. Genotyping and identifying Québec's historical human remains are a key to reconstructing the genomes of the founders of Québec and reinhuming archeological remains with a marked grave.


Subject(s)
Anthropology, Physical/methods , Genetic Markers , Maternal Inheritance , Paternal Inheritance , Adult , Body Remains , Humans , Male , Middle Aged , Quebec , Young Adult
16.
J Allergy Clin Immunol ; 143(6): 2062-2074, 2019 06.
Article in English | MEDLINE | ID: mdl-30579849

ABSTRACT

BACKGROUND: Epigenetic mechanisms, including methylation, can contribute to childhood asthma. Identifying DNA methylation profiles in asthmatic patients can inform disease pathogenesis. OBJECTIVE: We sought to identify differential DNA methylation in newborns and children related to childhood asthma. METHODS: Within the Pregnancy And Childhood Epigenetics consortium, we performed epigenome-wide meta-analyses of school-age asthma in relation to CpG methylation (Illumina450K) in blood measured either in newborns, in prospective analyses, or cross-sectionally in school-aged children. We also identified differentially methylated regions. RESULTS: In newborns (8 cohorts, 668 cases), 9 CpGs (and 35 regions) were differentially methylated (epigenome-wide significance, false discovery rate < 0.05) in relation to asthma development. In a cross-sectional meta-analysis of asthma and methylation in children (9 cohorts, 631 cases), we identified 179 CpGs (false discovery rate < 0.05) and 36 differentially methylated regions. In replication studies of methylation in other tissues, most of the 179 CpGs discovered in blood replicated, despite smaller sample sizes, in studies of nasal respiratory epithelium or eosinophils. Pathway analyses highlighted enrichment for asthma-relevant immune processes and overlap in pathways enriched both in newborns and children. Gene expression correlated with methylation at most loci. Functional annotation supports a regulatory effect on gene expression at many asthma-associated CpGs. Several implicated genes are targets for approved or experimental drugs, including IL5RA and KCNH2. CONCLUSION: Novel loci differentially methylated in newborns represent potential biomarkers of risk of asthma by school age. Cross-sectional associations in children can reflect both risk for and effects of disease. Asthma-related differential methylation in blood in children was substantially replicated in eosinophils and respiratory epithelium.


Subject(s)
Asthma/genetics , CpG Islands/genetics , ERG1 Potassium Channel/genetics , Epigenome/genetics , Interleukin-5 Receptor alpha Subunit/genetics , Child , Cross-Sectional Studies , DNA Methylation , Epigenesis, Genetic , Genome-Wide Association Study , Humans , Infant, Newborn
17.
Int J Mol Sci ; 21(23)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33260893

ABSTRACT

(1) Background: The atopic march is defined by the increased prevalence of allergic diseases after atopic dermatitis onset. In fact, atopic dermatitis is believed to play an important role in allergen sensitization via the damaged skin barrier, leading to allergic diseases such as allergic asthma and allergic rhinitis. The eosinophil, a pro-inflammatory cell that contributes to epithelial damage, is one of the various cells recruited in the inflammatory reactions characterizing these diseases. Few studies were conducted on the transcriptome of this cell type and even less on their specific microRNA (miRNA) profile, which could modulate pathogenesis of allergic diseases and clinical manifestations post-transcriptionally. Actually, their implication in allergic diseases is not fully understood, but they are believed to play a role in inflammation-related patterns and epithelial cell proliferation. (2) Methods: Next-generation sequencing was performed on RNA samples from eosinophils of individuals with atopic dermatitis, atopy, allergic rhinitis and asthma to obtain differential counts of primary miRNA (pri-miRNA); these were also analyzed for asthma-related phenotypes such as forced expiratory volume in one second (FEV1), immunoglobulin E (IgE) and provocative concentration of methacholine inducing a 20% fall in forced expiratory volume in 1 s (PC20) levels, as well as FEV1 to forced vital capacity (FEV1/FVC) ratio. (3) Results: Eighteen miRNAs from eosinophils were identified to be significantly different between affected individuals and unaffected ones. Based on counts from these miRNAs, individuals were then clustered into groups using Ward's method on Euclidian distances. Groups were found to be explained by asthma diagnosis, familial history of respiratory diseases and allergic rhinitis as well as neutrophil counts. (4) Conclusions: The 18 differential miRNA counts for the studying phenotypes allow a better understanding of the epigenetic mechanisms underlying the development of the allergic diseases included in the atopic march.


Subject(s)
Dermatitis, Atopic/genetics , Eosinophils/metabolism , Hypersensitivity/genetics , MicroRNAs/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Cluster Analysis , Female , Gene Expression Regulation , Humans , Male , MicroRNAs/genetics , Middle Aged , Phenotype , Young Adult
18.
Am J Physiol Cell Physiol ; 317(1): C58-C67, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30995105

ABSTRACT

Leigh syndrome French Canadian type (LSFC) is a mitochondrial disease caused by mutations in the leucine-rich pentatricopeptide repeat-containing (LRPPRC) gene leading to a reduction of cytochrome-c oxidase (COX) expression reaching 50% in skin fibroblasts. We have shown that under basal conditions, LSFC and control cells display similar ATP levels. We hypothesized that this occurs through upregulation of mechanistic target of rapamycin (mTOR)-mediated metabolic reprogramming. Our results showed that compared with controls, LSFC cells exhibited an upregulation of the mTOR complex 1 (mTORC1)/p70 ribosomal S6 kinase pathway and higher levels of hypoxia-inducible factor 1α (HIF-1α) and its downstream target pyruvate dehydrogenase kinase 1 (PDHK1), a regulator of mitochondrial pyruvate dehydrogenase 1 (PDH1). Consistent with these signaling alterations, LSFC cells displayed a 40-61% increase in [U-13C6]glucose contribution to pyruvate, lactate, and alanine formation, as well as higher levels of the phosphorylated and inactive form of PDH1-α. Interestingly, inhibition of mTOR with rapamycin did not alter HIF-1α or PDHK1 protein levels in LSFC fibroblasts. However, this treatment increased PDH1-α phosphorylation in control and LSFC cells and reduced ATP levels in control cells. Rapamycin also decreased LRPPRC expression by 41 and 11% in LSFC and control cells, respectively, and selectively reduced COX subunit IV expression in LSFC fibroblasts. Taken together, our data demonstrate the importance of mTORC1, independent of the HIF-1α/PDHK1 axis, in maintaining LRPPRC and COX expression in LSFC cells.


Subject(s)
Cytochrome-c Oxidase Deficiency/enzymology , Electron Transport Complex IV/metabolism , Fibroblasts/enzymology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Leigh Disease/enzymology , Mechanistic Target of Rapamycin Complex 1/metabolism , Neoplasm Proteins/metabolism , Skin/enzymology , Adenosine Triphosphate/metabolism , Cells, Cultured , Child , Cytochrome-c Oxidase Deficiency/genetics , Cytochrome-c Oxidase Deficiency/pathology , Electron Transport Complex IV/genetics , Energy Metabolism , Female , Fibroblasts/pathology , Gene Expression Regulation, Enzymologic , Glucose/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Leigh Disease/genetics , Leigh Disease/pathology , Mechanistic Target of Rapamycin Complex 1/genetics , Mitochondria/enzymology , Mitochondria/pathology , Neoplasm Proteins/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Pyruvate Dehydrogenase Complex/genetics , Pyruvate Dehydrogenase Complex/metabolism , Quebec , Signal Transduction , Skin/pathology
19.
Thorax ; 74(3): 254-260, 2019 03.
Article in English | MEDLINE | ID: mdl-30282721

ABSTRACT

BACKGROUND: A positional cloning study of bronchial hyper-responsiveness (BHR) at the 17p11 locus in the French Epidemiological study on the Genetics and Environment of Asthma (EGEA) families showed significant interaction between early-life environmental tobacco smoke (ETS) exposure and genetic variants located in DNAH9. This gene encodes the heavy chain subunit of axonemal dynein, which is involved with ATP in the motile cilia function.Our goal was to identify genetic variants at other genes interacting with ETS in BHR by investigating all genes belonging to the 'ATP-binding' and 'ATPase activity' pathways which include DNAH9, are targets of cigarette smoke and play a crucial role in the airway inflammation. METHODS: Family-based interaction tests between ETS-exposed and unexposed BHR siblings were conducted in 388 EGEA families. Twenty single-nucleotide polymorphisms (SNP) showing interaction signals (p≤5.10-3) were tested in the 253 Saguenay-Lac-Saint-Jean (SLSJ) families. RESULTS: One of these SNPs was significantly replicated for interaction with ETS in SLSJ families (p=0.003). Another SNP reached the significance threshold after correction for multiple testing in the combined analysis of the two samples (p=10-5). Results were confirmed using both a robust log-linear test and a gene-based interaction test. CONCLUSION: The SNPs showing interaction with ETS belong to the ATP8A1 and ABCA1 genes, which play a role in the maintenance of asymmetry and homeostasis of lung membrane lipids.


Subject(s)
ATP Binding Cassette Transporter 1/genetics , Adenosine Triphosphatases/genetics , Asthma/etiology , Axonemal Dyneins/genetics , Bronchial Hyperreactivity/etiology , Phospholipid Transfer Proteins/genetics , Tobacco Smoke Pollution/adverse effects , Adolescent , Adult , Age Factors , Child , Female , France , Genetic Predisposition to Disease , Humans , Male , Polymorphism, Single Nucleotide/genetics , Young Adult
20.
Clin Exp Allergy ; 49(10): 1342-1351, 2019 10.
Article in English | MEDLINE | ID: mdl-31379025

ABSTRACT

BACKGROUND: Asthma, a heterogeneous disease with variable age of onset, results from the interplay between genetic and environmental factors. Early-life tobacco smoke (ELTS) exposure is a major asthma risk factor. Only a few genetic loci have been reported to interact with ELTS exposure in asthma. OBJECTIVE: Our aim was to identify new loci interacting with ELTS exposure on time-to-asthma onset (TAO) in childhood. METHODS: We conducted genome-wide interaction analyses of ELTS exposure on time-to-asthma onset in childhood in five European-ancestry studies (totalling 8273 subjects) using Cox proportional-hazard model. The results of all five genome-wide analyses were meta-analysed. RESULTS: The 13q21 locus showed genome-wide significant interaction with ELTS exposure (P = 4.3 × 10-8 for rs7334050 within KLHL1 with consistent results across the five studies). Suggestive interactions (P < 5 × 10-6 ) were found at three other loci: 20p12 (rs13037508 within MACROD2; P = 4.9 × 10-7 ), 14q22 (rs7493885 near NIN; P = 2.9 × 10-6 ) and 2p22 (rs232542 near CYP1B1; P = 4.1 × 10-6 ). Functional annotations and the literature showed that the lead SNPs at these four loci influence DNA methylation in the blood and are located nearby CpG sites reported to be associated with exposure to tobacco smoke components, which strongly support our findings. CONCLUSIONS AND CLINICAL RELEVANCE: We identified novel candidate genes interacting with ELTS exposure on time-to-asthma onset in childhood. These genes have plausible biological relevance related to tobacco smoke exposure. Further epigenetic and functional studies are needed to confirm these findings and to shed light on the underlying mechanisms.


Subject(s)
Asthma/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Tobacco Smoke Pollution/adverse effects , Child , Cytochrome P-450 CYP1B1/genetics , Cytoskeletal Proteins/genetics , DNA Repair Enzymes/genetics , Female , Genome-Wide Association Study , Humans , Hydrolases/genetics , Male , Microfilament Proteins/genetics , Nuclear Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL