Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
PLoS Comput Biol ; 18(6): e1010168, 2022 06.
Article in English | MEDLINE | ID: mdl-35658003

ABSTRACT

Affinity maturation is an evolutionary process by which the affinity of antibodies (Abs) against specific antigens (Ags) increases through rounds of B-cell proliferation, somatic hypermutation, and positive selection in germinal centres (GC). The positive selection of B cells depends on affinity, but the underlying mechanisms of affinity discrimination and affinity-based selection are not well understood. It has been suggested that selection in GC depends on both rapid binding of B-cell receptors (BcRs) to Ags which is kinetically favourable and tight binding of BcRs to Ags, which is thermodynamically favourable; however, it has not been shown whether a selection bias for kinetic properties is present in the GC. To investigate the GC selection bias towards rapid and tight binding, we developed an agent-based model of GC and compared the evolution of founder B cells with initially identical low affinities but with different association/dissociation rates for Ag presented by follicular dendritic cells in three Ag collection mechanisms. We compared an Ag collection mechanism based on association/dissociation rates of B-cell interaction with presented Ag, which includes a probabilistic rupture of bonds between the B-cell and Ag (Scenario-1) with a reference scenario based on an affinity-based Ag collection mechanism (Scenario-0). Simulations showed that the mechanism of Ag collection affects the GC dynamics and the GC outputs concerning fast/slow (un)binding of B cells to FDC-presented Ags. In particular, clones with lower dissociation rates outcompete clones with higher association rates in Scenario-1, while remaining B cells from clones with higher association rates reach higher affinities. Accordingly, plasma cell and memory B cell populations were biased towards B-cell clones with lower dissociation rates. Without such probabilistic ruptures during the Ag extraction process (Scenario-2), the selective advantage for clones with very low dissociation rates diminished, and the affinity maturation level of all clones decreased to the reference level.


Subject(s)
B-Lymphocytes , Germinal Center , Antibody Affinity , Antigens , Lymphocyte Activation , Receptors, Antigen, B-Cell
2.
Nat Commun ; 15(1): 8117, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39284801

ABSTRACT

Reproducibility of computational research is often challenging despite established guidelines and best practices. Translating these guidelines into practical applications remains difficult. Here, we present ENCORE, an approach to enhance transparency and reproducibility by guiding researchers in how to structure and document a computational project. ENCORE builds on previous efforts in computational reproducibility and integrates all project components into a standardized file system structure. It utilizes pre-defined files as documentation templates, leverages GitHub for software versioning, and includes an HTML-based navigator. ENCORE is designed to be agnostic to the type of computational project, data, programming language, and ICT infrastructure, and does not rely on specific software tools. We also share our group's experience using ENCORE, highlighting that the most significant challenge to the routine adoption of approaches like ours is the lack of incentives to motivate researchers to dedicate sufficient time and effort to ensure reproducibility.

3.
Hemasphere ; 7(9): e938, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37637994

ABSTRACT

Chronic lymphocytic leukemia (CLL) cells are highly dependent on microenvironmental cells and signals. The lymph node (LN) is the critical site of in vivo CLL proliferation and development of resistance to both chemotherapy and targeted agents. We present a new model that incorporates key aspects of the CLL LN, which enables investigation of CLL cells in the context of a protective niche. We describe a three-dimensional (3D) in vitro culture system using ultra-low attachment plates to create spheroids of CLL cells derived from peripheral blood. Starting from CLL:T cell ratios as observed in LN samples, CLL activation was induced by either direct stimulation and/or indirectly via T cells. Compared with two-dimensional cultures, 3D cultures promoted CLL proliferation in a T cell-dependent manner, and enabled expansion for up to 7 weeks, including the formation of follicle-like structures after several weeks of culture. This model enables high-throughput drug screening, of which we describe response to Btk inhibition, venetoclax resistance, and T cell-mediated cytotoxicity as examples. In summary, we present the first LN-mimicking in vitro 3D culture for primary CLL, which enables readouts such as real-time drug screens, kinetic growth assays, and spatial localization. This is the first in vitro CLL system that allows testing of response and resistance to venetoclax and Bruton's tyrosine kinase inhibitors in the context of the tumor microenvironment, thereby opening up new possibilities for clinically useful applications.

4.
NPJ Syst Biol Appl ; 9(1): 8, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36927990

ABSTRACT

Sequencing of B-cell and T-cell immune receptor repertoires helps us to understand the adaptive immune response, although it only provides information about the clonotypes (lineages) and their frequencies and not about, for example, their affinity or antigen (Ag) specificity. To further characterize the identified clones, usually with special attention to the particularly abundant ones (dominant), additional time-consuming or expensive experiments are generally required. Here, we present an extension of a multiscale model of the germinal center (GC) that we previously developed to gain more insight in B-cell repertoires. We compare the extent that these simulated repertoires deviate from experimental repertoires established from single GCs, blood, or tissue. Our simulations show that there is a limited correlation between clonal abundance and affinity and that there is large affinity variability among same-ancestor (same-clone) subclones. Our simulations suggest that low-abundance clones and subclones, might also be of interest since they may have high affinity for the Ag. We show that the fraction of plasma cells (PCs) with high B-cell receptor (BcR) mRNA content in the GC does not significantly affect the number of dominant clones derived from single GCs by sequencing BcR mRNAs. Results from these simulations guide data interpretation and the design of follow-up experiments.


Subject(s)
B-Lymphocytes , Germinal Center , Receptors, Antigen, B-Cell/genetics
5.
Front Immunol ; 12: 716240, 2021.
Article in English | MEDLINE | ID: mdl-34484219

ABSTRACT

Memory B cells and antibody-secreting plasma cells are generated within germinal centers during affinity maturation in which B-cell proliferation, selection, differentiation, and self-renewal play important roles. The mechanisms behind memory B cell and plasma cell differentiation in germinal centers are not well understood. However, it has been suggested that cell fate is (partially) determined by asymmetric cell division, which involves the unequal distribution of cellular components to both daughter cells. To investigate what level and/or probability of asymmetric segregation of several fate determinant molecules, such as the antigen and transcription factors (BCL6, IRF4, and BLIMP1) recapitulates the temporal switch and DZ-to-LZ ratio in the germinal center, we implemented a multiscale model that combines a core gene regulatory network for plasma cell differentiation with a model describing the cellular interactions and dynamics in the germinal center. Our simulations show that BLIMP1 driven plasma cell differentiation together with coupled asymmetric division of antigen and BLIMP1 with a large segregation between the daughter cells results in a germinal center DZ-to-LZ ratio and a temporal switch from memory B cells to plasma cells that have been observed in experiments.


Subject(s)
Antigens/immunology , Asymmetric Cell Division/genetics , Germinal Center/immunology , Germinal Center/metabolism , Memory B Cells/immunology , Plasma Cells/immunology , Positive Regulatory Domain I-Binding Factor 1/genetics , Biomarkers , Cell Differentiation , Gene Expression Regulation , Gene Regulatory Networks , Humans , Lymphocyte Activation , Memory B Cells/metabolism , Models, Biological , Plasma Cells/metabolism
6.
Front Immunol ; 11: 620716, 2020.
Article in English | MEDLINE | ID: mdl-33613551

ABSTRACT

Germinal centers play a key role in the adaptive immune system since they are able to produce memory B cells and plasma cells that produce high affinity antibodies for an effective immune protection. The mechanisms underlying cell-fate decisions are not well understood but asymmetric division of antigen, B-cell receptor affinity, interactions between B-cells and T follicular helper cells (triggering CD40 signaling), and regulatory interactions of transcription factors have all been proposed to play a role. In addition, a temporal switch from memory B-cell to plasma cell differentiation during the germinal center reaction has been shown. To investigate if antigen affinity-based Tfh cell help recapitulates the temporal switch we implemented a multiscale model that integrates cellular interactions with a core gene regulatory network comprising BCL6, IRF4, and BLIMP1. Using this model we show that affinity-based CD40 signaling in combination with asymmetric division of B-cells result in switch from memory B-cell to plasma cell generation during the course of the germinal center reaction. We also show that cell fate division is unlikely to be (solely) based on asymmetric division of Ag but that BLIMP1 is a more important factor. Altogether, our model enables to test the influence of molecular modulations of the CD40 signaling pathway on the production of germinal center output cells.


Subject(s)
B-Lymphocytes/immunology , CD40 Antigens/immunology , Computer Simulation , Germinal Center/immunology , Immunologic Memory/immunology , Lymphopoiesis/immunology , Models, Immunological , Plasma Cells/immunology , T Follicular Helper Cells/immunology , Asymmetric Cell Division , B-Lymphocytes/cytology , Cell Lineage , Gene Regulatory Networks , Germinal Center/cytology , Humans , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/physiology , Plasma Cells/cytology , Positive Regulatory Domain I-Binding Factor 1/genetics , Positive Regulatory Domain I-Binding Factor 1/physiology , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/physiology , Signal Transduction , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL