ABSTRACT
Neuroinflammation is a hallmark of Alzheimer's disease (AD) and both positive and negative associations of individual inflammation-related markers with brain structure and cognitive function have been described. We aimed to identify inflammatory signatures of CSF immune-related markers that relate to changes of brain structure and cognition across the clinical spectrum ranging from normal aging to AD. A panel of 16 inflammatory markers, Aß42/40 and p-tau181 were measured in CSF at baseline in the DZNE DELCODE cohort (n = 295); a longitudinal observational study focusing on at-risk stages of AD. Volumetric maps of gray and white matter (GM/WM; n = 261) and white matter hyperintensities (WMHs, n = 249) were derived from baseline MRIs. Cognitive decline (n = 204) and the rate of change in GM volume was measured in subjects with at least 3 visits (n = 175). A principal component analysis on the CSF markers revealed four inflammatory components (PCs). Of these, the first component PC1 (highly loading on sTyro3, sAXL, sTREM2, YKL-40, and C1q) was associated with older age and higher p-tau levels, but with less pathological Aß when controlling for p-tau. PC2 (highly loading on CRP, IL-18, complement factor F/H and C4) was related to male gender, higher body mass index and greater vascular risk. PC1 levels, adjusted for AD markers, were related to higher GM and WM volumes, less WMHs, better baseline memory, and to slower atrophy rates in AD-related areas and less cognitive decline. In contrast, PC2 related to less GM and WM volumes and worse memory at baseline. Similar inflammatory signatures and associations were identified in the independent F.ACE cohort. Our data suggest that there are beneficial and detrimental signatures of inflammatory CSF biomarkers. While higher levels of TAM receptors (sTyro/sAXL) or sTREM2 might reflect a protective glia response to degeneration related to phagocytic clearance, other markers might rather reflect proinflammatory states that have detrimental impact on brain integrity.
Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Brain , Cognition , Cognitive Dysfunction , Inflammation , Magnetic Resonance Imaging , White Matter , tau Proteins , Humans , Male , Female , Biomarkers/cerebrospinal fluid , Aged , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/pathology , Middle Aged , Brain/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Cognition/physiology , Inflammation/cerebrospinal fluid , Magnetic Resonance Imaging/methods , Cognitive Dysfunction/cerebrospinal fluid , White Matter/pathology , tau Proteins/cerebrospinal fluid , Longitudinal Studies , Gray Matter/pathology , Cohort StudiesABSTRACT
Single-value scores reflecting the deviation from (FADE score) or similarity with (SAME score) prototypical novelty-related and memory-related functional magnetic resonance imaging (fMRI) activation patterns in young adults have been proposed as imaging biomarkers of healthy neurocognitive aging. Here, we tested the utility of these scores as potential diagnostic and prognostic markers in Alzheimer's disease (AD) and risk states like mild cognitive impairment (MCI) or subjective cognitive decline (SCD). To this end, we analyzed subsequent memory fMRI data from individuals with SCD, MCI, and AD dementia as well as healthy controls (HC) and first-degree relatives of AD dementia patients (AD-rel) who participated in the multi-center DELCODE study (N = 468). Based on the individual participants' whole-brain fMRI novelty and subsequent memory responses, we calculated the FADE and SAME scores and assessed their association with AD risk stage, neuropsychological test scores, CSF amyloid positivity, and ApoE genotype. Memory-based FADE and SAME scores showed a considerably larger deviation from a reference sample of young adults in the MCI and AD dementia groups compared to HC, SCD and AD-rel. In addition, novelty-based scores significantly differed between the MCI and AD dementia groups. Across the entire sample, single-value scores correlated with neuropsychological test performance. The novelty-based SAME score further differed between Aß-positive and Aß-negative individuals in SCD and AD-rel, and between ApoE ε4 carriers and non-carriers in AD-rel. Hence, FADE and SAME scores are associated with both cognitive performance and individual risk factors for AD. Their potential utility as diagnostic and prognostic biomarkers warrants further exploration, particularly in individuals with SCD and healthy relatives of AD dementia patients.
ABSTRACT
Memory clinic patients are a heterogeneous population representing various aetiologies of pathological ageing. It is not known whether divergent spatiotemporal progression patterns of brain atrophy, as previously described in Alzheimer's disease patients, are prevalent and clinically meaningful in this group of older adults. To uncover distinct atrophy subtypes, we applied the Subtype and Stage Inference (SuStaIn) algorithm to baseline structural MRI data from 813 participants enrolled in the DELCODE cohort (mean ± standard deviation, age = 70.67 ± 6.07 years, 52% females). Participants were cognitively unimpaired (n = 285) or fulfilled diagnostic criteria for subjective cognitive decline (n = 342), mild cognitive impairment (n = 118) or dementia of the Alzheimer's type (n = 68). Atrophy subtypes were compared in baseline demographics, fluid Alzheimer's disease biomarker levels, the Preclinical Alzheimer Cognitive Composite (PACC-5) as well as episodic memory and executive functioning. PACC-5 trajectories over up to 240 weeks were examined. To test whether baseline atrophy subtype and stage predicted clinical trajectories before manifest cognitive impairment, we analysed PACC-5 trajectories and mild cognitive impairment conversion rates of cognitively unimpaired participants and those with subjective cognitive decline. Limbic-predominant and hippocampal-sparing atrophy subtypes were identified. Limbic-predominant atrophy initially affected the medial temporal lobes, followed by further temporal regions and, finally, the remaining cortical regions. At baseline, this subtype was related to older age, more pathological Alzheimer's disease biomarker levels, APOE ε4 carriership and an amnestic cognitive impairment. Hippocampal-sparing atrophy initially occurred outside the temporal lobe, with the medial temporal lobe spared up to advanced atrophy stages. This atrophy pattern also affected individuals with positive Alzheimer's disease biomarkers and was associated with more generalized cognitive impairment. Limbic-predominant atrophy, in all participants and in only unimpaired participants, was linked to more negative longitudinal PACC-5 slopes than observed in participants without or with hippocampal-sparing atrophy and increased the risk of mild cognitive impairment conversion. SuStaIn modelling was repeated in a sample from the Swedish BioFINDER-2 cohort. Highly similar atrophy progression patterns and associated cognitive profiles were identified. Cross-cohort model generalizability, at both the subject and the group level, was excellent, indicating reliable performance in previously unseen data. The proposed model is a promising tool for capturing heterogeneity among older adults at early at-risk states for Alzheimer's disease in applied settings. The implementation of atrophy subtype- and stage-specific end points might increase the statistical power of pharmacological trials targeting early Alzheimer's disease.
Subject(s)
Alzheimer Disease , Atrophy , Cognitive Dysfunction , Disease Progression , Magnetic Resonance Imaging , Humans , Female , Male , Atrophy/pathology , Aged , Cognitive Dysfunction/pathology , Magnetic Resonance Imaging/methods , Alzheimer Disease/pathology , Middle Aged , Brain/pathology , Brain/diagnostic imaging , Neuropsychological Tests , Cohort Studies , Aged, 80 and over , Memory, Episodic , Memory Disorders/pathologyABSTRACT
Previous studies have shown that the cholinergic nucleus basalis of Meynert and its white matter projections are affected in Alzheimer's disease dementia and mild cognitive impairment. However, it is still unknown whether these alterations can be found in individuals with subjective cognitive decline, and whether they are more pronounced than changes found in conventional brain volumetric measurements. To address these questions, we investigated microstructural alterations of two major cholinergic pathways in individuals along the Alzheimer's disease continuum using an in vivo model of the human cholinergic system based on neuroimaging. We included 402 participants (52 Alzheimer's disease, 66 mild cognitive impairment, 172 subjective cognitive decline and 112 healthy controls) from the Deutsches Zentrum für Neurodegenerative Erkrankungen Longitudinal Cognitive Impairment and Dementia Study. We modelled the cholinergic white matter pathways with an enhanced diffusion neuroimaging pipeline that included probabilistic fibre-tracking methods and prior anatomical knowledge. The integrity of the cholinergic white matter pathways was compared between stages of the Alzheimer's disease continuum, in the whole cohort and in a CSF amyloid-beta stratified subsample. The discriminative power of the integrity of the pathways was compared to the conventional volumetric measures of hippocampus and nucleus basalis of Meynert, using a receiver operating characteristics analysis. A multivariate model was used to investigate the role of these pathways in relation to cognitive performance. We found that the integrity of the cholinergic white matter pathways was significantly reduced in all stages of the Alzheimer's disease continuum, including individuals with subjective cognitive decline. The differences involved posterior cholinergic white matter in the subjective cognitive decline stage and extended to anterior frontal white matter in mild cognitive impairment and Alzheimer's disease dementia stages. Both cholinergic pathways and conventional volumetric measures showed higher predictive power in the more advanced stages of the disease, i.e. mild cognitive impairment and Alzheimer's disease dementia. In contrast, the integrity of cholinergic pathways was more informative in distinguishing subjective cognitive decline from healthy controls, as compared with the volumetric measures. The multivariate model revealed a moderate contribution of the cholinergic white matter pathways but not of volumetric measures towards memory tests in the subjective cognitive decline and mild cognitive impairment stages. In conclusion, we demonstrated that cholinergic white matter pathways are altered already in subjective cognitive decline individuals, preceding the more widespread alterations found in mild cognitive impairment and Alzheimer's disease. The integrity of the cholinergic pathways identified the early stages of Alzheimer's disease better than conventional volumetric measures such as hippocampal volume or volume of cholinergic nucleus basalis of Meynert.
Subject(s)
Alzheimer Disease , Cognitive Dysfunction , White Matter , Humans , Alzheimer Disease/psychology , Brain , Cognitive Dysfunction/psychology , Cholinergic AgentsABSTRACT
INTRODUCTION: We investigated longitudinal associations between self-reported exercise and Alzheimer's disease (AD)-related biomarkers in individuals with autosomal dominant AD (ADAD) mutations. METHODS: Participants were 308 ADAD mutation carriers aged 39.7 ± 10.8 years from the Dominantly Inherited Alzheimer's Network. Weekly exercise volume was measured via questionnaire and associations with brain volume (magnetic resonance imaging), cerebrospinal fluid biomarkers, and brain amyloid beta (Aß) measured by positron emission tomography were investigated. RESULTS: Greater volume of weekly exercise at baseline was associated with slower accumulation of brain Aß at preclinical disease stages ß = -0.16 [-0.23 to -0.08], and a slower decline in multiple brain regions including hippocampal volume ß = 0.06 [0.03 to 0.08]. DISCUSSION: Exercise is associated with more favorable profiles of AD-related biomarkers in individuals with ADAD mutations. Exercise may have therapeutic potential for delaying the onset of AD; however, randomized controlled trials are vital to determine a causal relationship before a clinical recommendation of exercise is implemented. HIGHLIGHTS: Greater self-reported weekly exercise predicts slower declines in brain volume in autosomal dominant Alzheimer's disease (ADAD). Greater self-reported weekly exercise predicts slower accumulation of brain amyloid beta in ADAD. Associations varied depending on closeness to estimated symptom onset.
ABSTRACT
INTRODUCTION: Blood-based biomarkers are a cost-effective and minimally invasive method for diagnosing the early and preclinical stages of amyloid positivity (AP). Our study aims to investigate our novel immunoprecipitation-immunoassay (IP-IA) as a test for predicting cognitive decline. METHODS: We measured levels of amyloid beta (Aß)X-40 and AßX-42 in immunoprecipitated eluates from the DELCODE cohort. Receiver-operating characteristic (ROC) curves, regression analyses, and Cox proportional hazard regression models were constructed to predict AP by Aß42/40 classification in cerebrospinal fluid (CSF) and conversion to mild cognitive impairment (MCI) or dementia. RESULTS: We detected a significant correlation between AßX-42/X-40 in plasma and CSF (r = 0.473). Mixed-modeling analysis revealed a substantial prediction of AßX-42/X-40 with an area under the curve (AUC) of 0.81 for AP (sensitivity: 0.79, specificity: 0.74, positive predictive value [PPV]: 0.71, negative predictive value [NPV]: 0.81). In addition, lower AßX-42/X-40 ratios were associated with negative PACC5 slopes, suggesting cognitive decline. DISCUSSION: Our results suggest that assessing the plasma AßX-42/X-40 ratio via our semiautomated IP-IA is a promising biomarker when examining patients with early or preclinical AD. HIGHLIGHTS: New plasma Aß42/Aß40 measurement using immunoprecipitation-immunoassay Plasma Aß42/Aß40 associated with longitudinal cognitive decline Promising biomarker to detect subjective cognitive decline at-risk for brain amyloid positivity.
Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Cognitive Dysfunction , Peptide Fragments , Humans , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/cerebrospinal fluid , Alzheimer Disease/blood , Alzheimer Disease/diagnosis , Alzheimer Disease/cerebrospinal fluid , Cognitive Dysfunction/blood , Cognitive Dysfunction/cerebrospinal fluid , Cognitive Dysfunction/diagnosis , Male , Female , Aged , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Peptide Fragments/blood , Peptide Fragments/cerebrospinal fluid , Middle Aged , ROC Curve , Immunoprecipitation , Disease ProgressionABSTRACT
INTRODUCTION: Subjective cognitive decline (SCD) in amyloid-positive (Aß+) individuals was proposed as a clinical indicator of Stage 2 in the Alzheimer's disease (AD) continuum, but this requires further validation across cultures, measures, and recruitment strategies. METHODS: Eight hundred twenty-one participants from SILCODE and DELCODE cohorts, including normal controls (NC) and individuals with SCD recruited from the community or from memory clinics, underwent neuropsychological assessments over up to 6 years. Amyloid positivity was derived from positron emission tomography or plasma biomarkers. Global cognitive change was analyzed using linear mixed-effects models. RESULTS: In the combined and stratified cohorts, Aß+ participants with SCD showed steeper cognitive decline or diminished practice effects compared with NC or Aß- participants with SCD. These findings were confirmed using different operationalizations of SCD and amyloid positivity, and across different SCD recruitment settings. DISCUSSION: Aß+ individuals with SCD in German and Chinese populations showed greater global cognitive decline and could be targeted for interventional trials. HIGHLIGHTS: SCD in amyloid-positive (Aß+) participants predicts a steeper cognitive decline. This finding does not rely on specific SCD or amyloid operationalization. This finding is not specific to SCD patients recruited from memory clinics. This finding is valid in both German and Chinese populations. Aß+ older adults with SCD could be a target population for interventional trials.
Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Cognitive Dysfunction , Neuropsychological Tests , Positron-Emission Tomography , Humans , Cognitive Dysfunction/blood , Female , Male , Germany , Aged , Amyloid beta-Peptides/blood , Neuropsychological Tests/statistics & numerical data , Alzheimer Disease/blood , Biomarkers/blood , Cohort Studies , China , Middle Aged , East Asian PeopleABSTRACT
Alterations in the gut microbiome are associated with the pathogenesis of Alzheimer's disease (AD) and can be used as a diagnostic measure. However, longitudinal data of the gut microbiome and knowledge about its prognostic significance for the development and progression of AD are limited. The aim of the present study was to develop a reliable predictive model based on gut microbiome data for AD development. In this longitudinal study, we investigated the intestinal microbiome in 49 mild cognitive impairment (MCI) patients over a mean (SD) follow-up of 3.7 (0.6) years, using shotgun metagenomics. At the end of the 4-year follow-up (4yFU), 27 MCI patients converted to AD dementia and 22 MCI patients remained stable. The best taxonomic model for the discrimination of AD dementia converters from stable MCI patients included 24 genera, yielding an area under the receiver operating characteristic curve (AUROC) of 0.87 at BL, 0.92 at 1yFU and 0.95 at 4yFU. The best models with functional data were obtained via analyzing 25 GO (Gene Ontology) features with an AUROC of 0.87 at BL, 0.85 at 1yFU and 0.81 at 4yFU and 33 KO [Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog] features with an AUROC of 0.79 at BL, 0.88 at 1yFU and 0.82 at 4yFU. Using ensemble learning for these three models, including a clinical model with the four parameters of age, gender, body mass index (BMI) and Apolipoprotein E (ApoE) genotype, yielded an AUROC of 0.96 at BL, 0.96 at 1yFU and 0.97 at 4yFU. In conclusion, we identified novel and timely stable gut microbiome algorithms that accurately predict progression to AD dementia in individuals with MCI over a 4yFU period.
Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Gastrointestinal Microbiome , Humans , Alzheimer Disease/genetics , Gastrointestinal Microbiome/genetics , Longitudinal Studies , Prognosis , Cognitive Dysfunction/etiology , Disease Progression , BiomarkersABSTRACT
We investigated whether the impact of tau-pathology on memory performance and on hippocampal/medial temporal memory function in non-demented individuals depends on the presence of amyloid pathology, irrespective of diagnostic clinical stage. We conducted a cross-sectional analysis of the observational, multicentric DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE). Two hundred and thirty-five participants completed task functional MRI and provided CSF (92 cognitively unimpaired, 100 experiencing subjective cognitive decline and 43 with mild cognitive impairment). Presence (A+) and absence (A-) of amyloid pathology was defined by CSF amyloid-ß42 (Aß42) levels. Free recall performance in the Free and Cued Selective Reminding Test, scene recognition memory accuracy and hippocampal/medial temporal functional MRI novelty responses to scene images were related to CSF total-tau and phospho-tau levels separately for A+ and A- individuals. We found that total-tau and phospho-tau levels were negatively associated with memory performance in both tasks and with novelty responses in the hippocampus and amygdala, in interaction with Aß42 levels. Subgroup analyses showed that these relationships were only present in A+ and remained stable when very high levels of tau (>700 pg/ml) and phospho-tau (>100 pg/ml) were excluded. These relationships were significant with diagnosis, age, education, sex, assessment site and Aß42 levels as covariates. They also remained significant after propensity score based matching of phospho-tau levels across A+ and A- groups. After classifying this matched sample for phospho-tau pathology (T-/T+), individuals with A+/T+ were significantly more memory-impaired than A-/T+ despite the fact that both groups had the same amount of phospho-tau pathology. ApoE status (presence of the E4 allele), a known genetic risk factor for Alzheimer's disease, did not mediate the relationship between tau pathology and hippocampal function and memory performance. Thus, our data show that the presence of amyloid pathology is associated with a linear relationship between tau pathology, hippocampal dysfunction and memory impairment, although the actual severity of amyloid pathology is uncorrelated. Our data therefore indicate that the presence of amyloid pathology provides a permissive state for tau-related hippocampal dysfunction and hippocampus-dependent recognition and recall impairment. This raises the possibility that in the predementia stage of Alzheimer's disease, removing the negative impact of amyloid pathology could improve memory and hippocampal function even if the amount of tau-pathology in CSF is not changed, whereas reducing increased CSF tau-pathology in amyloid-negative individuals may not proportionally improve memory function.
Subject(s)
Alzheimer Disease , Amyloidosis , Cognitive Dysfunction , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloidogenic Proteins , Apolipoproteins E/genetics , Biomarkers , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/genetics , Cross-Sectional Studies , Hippocampus/metabolism , Humans , tau Proteins/metabolismABSTRACT
BACKGROUND: Alzheimer's disease (AD) is often preceded by stages of cognitive impairment, namely subjective cognitive decline (SCD) and mild cognitive impairment (MCI). While cerebrospinal fluid (CSF) biomarkers are established predictors of AD, other non-invasive candidate predictors include personality traits, anxiety, and depression, among others. These predictors offer non-invasive assessment and exhibit changes during AD development and preclinical stages. METHODS: In a cross-sectional design, we comparatively evaluated the predictive value of personality traits (Big Five), geriatric anxiety and depression scores, resting-state functional magnetic resonance imaging activity of the default mode network, apoliprotein E (ApoE) genotype, and CSF biomarkers (tTau, pTau181, Aß42/40 ratio) in a multi-class support vector machine classification. Participants included 189 healthy controls (HC), 338 individuals with SCD, 132 with amnestic MCI, and 74 with mild AD from the multicenter DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE). RESULTS: Mean predictive accuracy across all participant groups was highest when utilizing a combination of personality, depression, and anxiety scores. HC were best predicted by a feature set comprised of depression and anxiety scores and participants with AD were best predicted by a feature set containing CSF biomarkers. Classification of participants with SCD or aMCI was near chance level for all assessed feature sets. CONCLUSION: Our results demonstrate predictive value of personality trait and state scores for AD. Importantly, CSF biomarkers, personality, depression, anxiety, and ApoE genotype show complementary value for classification of AD and its at-risk stages.
Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Aged , Humans , Alzheimer Disease/psychology , Amyloid beta-Peptides/cerebrospinal fluid , Anxiety , Apolipoproteins E/genetics , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/psychology , Cross-Sectional Studies , Depression , Machine Learning , PersonalityABSTRACT
BACKGROUND: Apathy is the most frequent neuropsychiatric symptom in patients with dementia of the Alzheimer's type (DAT). We analyzed the influence of apathy on the resource use of DAT patients and their caregivers. METHODS: Included were baseline data of 107 DAT patients from a randomized clinical trial on apathy treatment. The Resource Utilization in Dementia (RUD) instrument assessed costs over a 1-month period prior to baseline. Cost predictors were determined via a least absolute shrinkage and selection operator (LASSO). RESULTS: On average, total monthly costs were 3070, of which 2711 accounted for caregivers' and 359 for patients' costs. An increase of one point in the Apathy Evaluation Scale resulted in a 4.1% increase in total costs. DISCUSSION: Apathy is a significant cost driving factor for total costs in mild to moderate DAT. Effective treatment of apathy might be associated with reduced overall costs in DAT.
Subject(s)
Alzheimer Disease , Apathy , Humans , Alzheimer Disease/diagnosis , Caregivers/psychology , Treatment OutcomeABSTRACT
INTRODUCTION: As knowledge about neurological examination findings in autosomal dominant Alzheimer disease (ADAD) is incomplete, we aimed to determine the frequency and significance of neurological examination findings in ADAD. METHODS: Frequencies of neurological examination findings were compared between symptomatic mutation carriers and non mutation carriers from the Dominantly Inherited Alzheimer Network (DIAN) to define AD neurological examination findings. AD neurological examination findings were analyzed regarding frequency, association with and predictive value regarding cognitive decline, and association with brain atrophy in symptomatic mutation carriers. RESULTS: AD neurological examination findings included abnormal deep tendon reflexes, gait disturbance, pathological cranial nerve examination findings, tremor, abnormal finger to nose and heel to shin testing, and compromised motor strength. The frequency of AD neurological examination findings was 65.1%. Cross-sectionally, mutation carriers with AD neurological examination findings showed a more than two-fold faster cognitive decline and had greater parieto-temporal atrophy, including hippocampal atrophy. Longitudinally, AD neurological examination findings predicted a significantly greater decline over time. DISCUSSION: ADAD features a distinct pattern of neurological examination findings that is useful to estimate prognosis and may inform clinical care and therapeutic trial designs.
Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/pathology , Cognitive Dysfunction/genetics , Neurologic ExaminationABSTRACT
INTRODUCTION: It remains unclear whether functional brain networks are consistently altered in individuals with subjective cognitive decline (SCD) of diverse ethnic and cultural backgrounds and whether the network alterations are associated with an amyloid burden. METHODS: Cross-sectional resting-state functional magnetic resonance imaging connectivity (FC) and amyloid-positron emission tomography (PET) data from the Chinese Sino Longitudinal Study on Cognitive Decline and German DZNE Longitudinal Cognitive Impairment and Dementia cohorts were analyzed. RESULTS: Limbic FC, particularly hippocampal connectivity with right insula, was consistently higher in SCD than in controls, and correlated with SCD-plus features. Smaller SCD subcohorts with PET showed inconsistent amyloid positivity rates and FC-amyloid associations across cohorts. DISCUSSION: Our results suggest an early adaptation of the limbic network in SCD, which may reflect increased awareness of cognitive decline, irrespective of amyloid pathology. Different amyloid positivity rates may indicate a heterogeneous underlying etiology in Eastern and Western SCD cohorts when applying current research criteria. Future studies should identify culture-specific features to enrich preclinical Alzheimer's disease in non-Western populations. HIGHLIGHTS: Common limbic hyperconnectivity across Chinese and German subjective cognitive decline (SCD) cohorts was observed. Limbic hyperconnectivity may reflect awareness of cognition, irrespective of amyloid load. Further cross-cultural harmonization of SCD regarding Alzheimer's disease pathology is required.
Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain/pathology , Cross-Sectional Studies , East Asian People , Magnetic Resonance Imaging , Positron-Emission TomographyABSTRACT
INTRODUCTION: It is uncertain whether subjective cognitive decline (SCD) in individuals who seek medical help serves the identification of the initial symptomatic stage 2 of the Alzheimer's disease (AD) continuum. METHODS: Cross-sectional and longitudinal data from the multicenter, memory clinic-based DELCODE study. RESULTS: The SCD group showed slightly worse cognition as well as more subtle functional and behavioral symptoms than the control group (CO). SCD-A+ cases (39.3% of all SCD) showed greater hippocampal atrophy, lower cognitive and functional performance, and more behavioral symptoms than CO-A+. Amyloid concentration in the CSF had a greater effect on longitudinal cognitive decline in SCD than in the CO group. DISCUSSION: Our data suggests that SCD serves the identification of stage 2 of the AD continuum and that stage 2, operationalized as SCD-A+, is associated with subtle, but extended impact of AD pathology in terms of neurodegeneration, symptoms and clinical progression.
Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides , Cross-Sectional Studies , Cognitive Dysfunction/diagnosis , Cognition , Biomarkers , tau ProteinsABSTRACT
In Alzheimer's disease (AD), a single-nucleotide polymorphism in the gene encoding brain-derived neurotrophic factor (BDNFVal66Met) is associated with worse impact of primary AD pathology (beta-amyloid, Aß) on neurodegeneration and cognitive decline, rendering BDNFVal66Met an important modulating factor of cognitive impairment in AD. However, the effect of BDNFVal66Met on functional networks that may underlie cognitive impairment in AD is poorly understood. Using a cross-validation approach, we first explored in subjects with autosomal dominant AD (ADAD) from the Dominantly Inherited Alzheimer Network (DIAN) the effect of BDNFVal66Met on resting-state fMRI assessed functional networks. In seed-based connectivity analysis of six major large-scale networks, we found a stronger decrease of hippocampus (seed) to medial-frontal connectivity in the BDNFVal66Met carriers compared to BDNFVal homozogytes. BDNFVal66Met was not associated with connectivity in any other networks. Next, we tested whether the finding of more pronounced decrease in hippocampal-medial-frontal connectivity in BDNFVal66Met could be also found in elderly subjects with sporadically occurring Aß, including a group with subjective cognitive decline (N = 149, FACEHBI study) and a group ranging from preclinical to AD dementia (N = 114, DELCODE study). In both of these independently recruited groups, BDNFVal66Met was associated with a stronger effect of more abnormal Aß-levels (assessed by biofluid-assay or amyloid-PET) on hippocampal-medial-frontal connectivity decreases, controlled for hippocampus volume and other confounds. Lower hippocampal-medial-frontal connectivity was associated with lower global cognitive performance in the DIAN and DELCODE studies. Together these results suggest that BDNFVal66Met is selectively associated with a higher vulnerability of hippocampus-frontal connectivity to primary AD pathology, resulting in greater AD-related cognitive impairment.
Subject(s)
Alzheimer Disease , Brain-Derived Neurotrophic Factor/genetics , Cognitive Dysfunction , Aged , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Brain/metabolism , Hippocampus/metabolism , Humans , Magnetic Resonance Imaging , Polymorphism, Single Nucleotide , Positron-Emission TomographyABSTRACT
Several Alzheimer's disease (AD) atrophy subtypes were identified, but their brain network properties are unclear. We analyzed data from two independent datasets, including 166 participants (103 AD/63 controls) from the DZNE-longitudinal cognitive impairment and dementia study and 151 participants (121 AD/30 controls) from the AD neuroimaging initiative cohorts, aiming to identify differences between AD atrophy subtypes in resting-state functional magnetic resonance imaging intra-network connectivity (INC) and global and nodal network properties. Using a data-driven clustering approach, we identified four AD atrophy subtypes with differences in functional connectivity, accompanied by clinical and biomarker alterations, including a medio-temporal-predominant (S-MT), a limbic-predominant (S-L), a diffuse (S-D), and a mild-atrophy (S-MA) subtype. S-MT and S-D showed INC reduction in the default mode, dorsal attention, visual and limbic network, and a pronounced reduction of "global efficiency" and decrease of the "clustering coefficient" in parietal and temporal lobes. Despite severe atrophy in limbic areas, the S-L exhibited only marginal global network but substantial nodal network failure. S-MA, in contrast, showed limited impairment in clinical and cognitive scores but pronounced global network failure. Our results contribute toward a better understanding of heterogeneity in AD with the detection of distinct differences in functional connectivity networks accompanied by CSF biomarker and cognitive differences in AD subtypes.
Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/pathology , Atrophy/pathology , Brain , Cognitive Dysfunction/pathology , Humans , Magnetic Resonance Imaging/methodsABSTRACT
Alzheimer's disease (AD) is the most common form of dementia in the elderly and has been associated with changes in lipoprotein metabolism. We performed quantitative lipoprotein analysis in a local cohort of cognitively impaired elderly and control subjects using standardized nuclear magnetic resonance (NMR) spectroscopy. A commercially available quantitative NMR-based assay covering 112 lipoprotein main and subtype variables was used to investigate blood serum samples from a moderate cohort size of 161 persons (71 female, 90 male), including measures of quality control. Additionally, clinical metadata and cerebrospinal fluid AD biomarkers were collected and used for analysis. High-density lipoprotein (HDL) HDL-4 subfraction levels were mostly high in female individuals with mild cognitive impairment (MCI), followed by AD. Low-density lipoprotein (LDL) LDL-2 cholesterol was slightly elevated in male AD patients. HDL-2 apolipoprotein Apo-A1, HDL-2 phospholipids, and HDL-3 triglycerides were highly abundant in AD and MCI women compared to men. When considering clinical biomarkers (Aß, tau), very low-density lipoprotein (VLDL) VLDL-1 and intermediate-density lipoprotein (IDL) triglycerides were substantially higher in AD compared to MCI. In addition, triglyceride levels correlated positively with dementia. Different lipoprotein serum patterns were identified for AD, MCI, and control subjects. Interestingly, HDL-4 and LDL-2 cholesterol parameters revealed strong gender-specific changes in the context of AD-driven dementia. As gender-based comparisons were based on smaller sub-groups with a low n-number, several statistical findings did not meet the significance threshold for multiple comparisons testing. Still, our finding suggests that serum HDL-4 parameters and various triglycerides correlate positively with AD pathology which could be a read-out of extended lipids traveling through the blood-brain barrier, supporting amyloid plaque formation processes. Thereof, we see herein a proof of concept that this quantitative NMR-based lipoprotein assay can generate important and highly interesting data for refined AD diagnosis and patient stratification, especially when larger cohorts are available.
Subject(s)
Alzheimer Disease , Humans , Female , Male , Aged , Triglycerides , Lipoproteins, IDL , Serum , Lipoproteins, HDL2 , Lipoproteins, HDL3 , Lipoproteins , Lipoproteins, LDL , Cholesterol , Cholesterol, LDL , Apolipoproteins , Biomarkers , Magnetic Resonance Spectroscopy , Cholesterol, HDLABSTRACT
Dementias are expensive diseases: the net annual cost in European healthcare is about 28.000 per case with a strong stage dependency, of which medical care accounts for about 19%. Diagnostic costs, on the other hand, account for only a small proportion of the total costs. With changes in the guidelines, biomarker tests are becoming increasingly important. At present, the concrete economic impact of biomarker-based diagnosis is largely unknown. To determine the actual costs of diagnostic procedures based on guidelines, we conducted a survey among the members of the German Memory Clinic Network (DNG). From 15 expert centres, the staff engagement time for all procedures was collected. Based on the individual engagement times of the different professions, the total of personnel costs for diagnostics was calculated using current gross personnel costs. The total sum of diagnostic costs (personnel plus procedures) was calculated for three different scenarios e. g. 633,97 for diagnostics without biomarkers, 1.214,90 for diagnostics with CSF biomarkers and 4.740,58 for diagnostics with FDG- plus Amyloid-PET. In addition, the actual diagnostic costs of the current practice in expert memory clinics were estimated, taking into account personnel costs, costs for the different procedures and the frequency of their use across all patients. This results in total average costs of 1.394,43 per case as the mean across all centres (personnel costs 351,72, costs for diagnostic procedures 1.042,71). The results show that state-of-the-art diagnosis of dementia and pre-dementia states, such as mild cognitive impairment (MCI) requires financial resources, which are currently not fully reimbursed in Germany. The need for a biomarker-based etiological diagnosis of dementia and pre-dementia states will increase, due to availability of disease-modifying treatments. Therefore, the current gap of reimbursement must be filled by new models of compensation.
Subject(s)
Cognitive Dysfunction , Dementia , Cognitive Dysfunction/diagnosis , Dementia/diagnosis , Early Diagnosis , Germany , Health Care Costs , HumansABSTRACT
INTRODUCTION: A biphasic model for brain structural changes in preclinical Alzheimer's disease (AD) could reconcile some conflicting and paradoxical findings in observational studies and anti-amyloid clinical trials. METHODS: In this study we tested this model fitting linear versus quadratic trajectories and computed the timing of the inflection points vertexwise of cortical thickness and cortical diffusivity-a novel marker of cortical microstructure-changes in 389 participants from the Dominantly Inherited Alzheimer Network. RESULTS: In early preclinical AD, between 20 and 15 years before estimated symptom onset, we found increases in cortical thickness and decreases in cortical diffusivity followed by cortical thinning and cortical diffusivity increases in later preclinical and symptomatic stages. The inflection points 16 to 19 years before estimated symptom onset are in agreement with the start of tau biomarker alterations. DISCUSSION: These findings confirm a biphasic trajectory for brain structural changes and have direct implications when interpreting magnetic resonance imaging measures in preventive AD clinical trials.
Subject(s)
Alzheimer Disease/pathology , Cerebral Cortex/pathology , Prodromal Symptoms , Adult , Alzheimer Disease/genetics , Biomarkers/cerebrospinal fluid , Brain , Diffusion Magnetic Resonance Imaging , Humans , Longitudinal Studies , Mutation/genetics , tau Proteins/physiologyABSTRACT
Owing to an early and marked deposition of amyloid-ß in the basal ganglia, autosomal dominant Alzheimer's disease could distinctly involve motor symptoms. Therefore, we aimed to assess the prevalence and characteristics of motor signs in autosomal dominant Alzheimer's disease. Baseline Unified Parkinson Disease Rating Scale part three scores (UPDRS-III) from 433 participants of the Dominantly Inherited Alzheimer's Network observational study were analysed. Motor symptoms were scrutinized with respect to associations with mutation carrier status, mutation site within PSEN1, basal ganglia amyloid-ß as measured by Pittsburgh compound B PET, estimated years to symptom onset and Clinical Dementia Rating Scale-Sum of Boxes. Motor findings in mutation carriers were compared to patients with sporadic Alzheimer's disease using data of the National Alzheimer's Coordination Center. Mutation carriers showed motor findings at a higher frequency (28.4% versus 12.8%; P < 0.001) and severity (mean UPDRS-III scores 2.0 versus 0.4; P < 0.001) compared to non-carriers. Eleven of the 27 UPDRS-III items were statistically more frequently affected in mutation carriers after adjustment for multiple comparisons. Ten of these 11 items were subscale components of bradykinesia. In cognitively asymptomatic mutation carriers, dysdiadochokinesia was more frequent compared to non-carriers (right hand: 3.8% versus 0%; adjusted P = 0.023; left: 4.4% versus 0.6%; adjusted P = 0.031). In this cohort, the positive predictive value for mutation carrier status in cognitively asymptomatic participants (50% a priori risk) of dysdiadochokinesia was 100% for the right and 87.5% for the left side. Mutation carriers with motor findings more frequently were basal ganglia amyloid-ß positive (84% versus 63.3%; P = 0.006) and showed more basal ganglia amyloid-ß deposition (Pittsburgh compound B-standardized uptake value ratio 2.472 versus 1.928; P = 0.002) than those without. Frequency and severity of motor findings were greater in post-codon 200 PSEN1 mutations (36%; mean UPDRS-III score 3.03) compared to mutations pre-codon 200 PSEN1 (19.3%, P = 0.022; 0.91, P = 0.013). In mutation carriers, motor symptom severity was significantly positively correlated with basal ganglia amyloid-ß deposition, Clinical Dementia Rating scores and estimated years to symptom onset. Mutation carriers with a Clinical Dementia Rating global score of 2 exhibited more pronounced motor symptoms than sporadic Alzheimer's disease patients with the same Clinical Dementia Rating global score (mean UPDRS-III scores 20.71 versus 5.96; P < 0.001). With a prevalence of approximately 30% and increasing severity with progression of dementia, motor symptoms are proven as a clinically relevant finding in autosomal dominant Alzheimer's disease, in particular in advanced dementia stages, that correlates with deposition of amyloid-ß in the basal ganglia. In a very small per cent of cognitively asymptomatic members of families with autosomal dominant Alzheimer's disease, dysdiadochokinesia may increase the chance of an individual's status as mutation carrier.