Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 258
Filter
Add more filters

Publication year range
1.
Hum Mol Genet ; 32(4): 696-707, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36255742

ABSTRACT

BACKGROUND: Asthma is a heterogeneous common respiratory disease that remains poorly understood. The established genetic associations fail to explain the high estimated heritability, and the prevalence of asthma differs between populations and geographic regions. Robust association analyses incorporating different genetic ancestries and whole-genome sequencing data may identify novel genetic associations. METHODS: We performed family-based genome-wide association analyses of childhood-onset asthma based on whole-genome sequencing (WGS) data for the 'The Genetic Epidemiology of Asthma in Costa Rica' study (GACRS) and the Childhood Asthma Management Program (CAMP). Based on parent-child trios with children diagnosed with asthma, we performed a single variant analysis using an additive and a recessive genetic model and a region-based association analysis of low-frequency and rare variants. RESULTS: Based on 1180 asthmatic trios (894 GACRS trios and 286 CAMP trios, a total of 3540 samples with WGS data), we identified three novel genetic loci associated with childhood-onset asthma: rs4832738 on 4p14 ($P=1.72\ast{10}^{-9}$, recessive model), rs1581479 on 8p22 ($P=1.47\ast{10}^{-8}$, additive model) and rs73367537 on 10q26 ($P=1.21\ast{10}^{-8}$, additive model in GACRS only). Integrative analyses suggested potential novel candidate genes underlying these associations: PGM2 on 4p14 and FGF20 on 8p22. CONCLUSION: Our family-based whole-genome sequencing analysis identified three novel genetic loci for childhood-onset asthma. Gene expression data and integrative analyses point to PGM2 on 4p14 and FGF20 on 8p22 as linked genes. Furthermore, region-based analyses suggest independent potential low-frequency/rare variant associations on 8p22. Follow-up analyses are needed to understand the functional mechanisms and generalizability of these associations.


Subject(s)
Asthma , Genome-Wide Association Study , Humans , Genetic Predisposition to Disease , Asthma/genetics , Genetic Loci , Whole Genome Sequencing , Polymorphism, Single Nucleotide/genetics , Fibroblast Growth Factors/genetics
2.
Am J Respir Crit Care Med ; 210(3): 288-297, 2024 08 01.
Article in English | MEDLINE | ID: mdl-38635834

ABSTRACT

Background: The anti-IgE monoclonal antibody omalizumab is widely used for severe asthma. This study aimed to identify biomarkers that predict clinical improvement during 1 year of omalizumab treatment. Methods: One-year open-label Study of Mechanisms of action of Omalizumab in Severe Asthma (SoMOSA) involving 216 patients with severe (Global Initiative for Asthma step 4/5) uncontrolled atopic asthma (at least two severe exacerbations in the previous year) taking high-dose inhaled corticosteroids and long-acting ß-agonists with or without maintenance oral corticosteroids. It had two phases: 0-16 weeks, to assess early clinical improvement by Global Evaluation of Therapeutic Effectiveness (GETE); and 16-52 weeks, to assess late responses based on ⩾50% reduction in exacerbations or mOCS dose. All participants provided samples (exhaled breath, blood, sputum, urine) before and after 16 weeks of omalizumab treatment. Measurements and Main Results: A total of 191 patients completed phase 1; 63% had early improvement. Of 173 who completed phase 2, 69% had reduced exacerbations by ⩾50% and 57% (37 of 65) taking mOCSs had reduced their dose by ⩾50%. The primary outcomes 2,3-dinor-11-ß-PGF2α, GETE score, and standard clinical biomarkers (blood and sputum eosinophils, exhaled nitric oxide, serum IgE) did not predict either clinical response. Five volatile organic compounds and five plasma lipid biomarkers strongly predicted the ⩾50% reduction in exacerbations (receiver operating characteristic areas under the curve of 0.780 and 0.922, respectively) and early responses (areas under the curve of 0.835 and 0.949, respectively). In an independent cohort, gas chromatography/mass spectrometry biomarkers differentiated between severe and mild asthma. Conclusions: This is the first discovery of omics biomarkers that predict improvement in asthma with biologic agent treatment. Prospective validation and development for clinical use is justified.


Subject(s)
Anti-Asthmatic Agents , Asthma , Biomarkers , Omalizumab , Humans , Omalizumab/therapeutic use , Asthma/drug therapy , Asthma/blood , Male , Female , Anti-Asthmatic Agents/therapeutic use , Adult , Middle Aged , Biomarkers/blood , Treatment Outcome , Severity of Illness Index , Immunoglobulin E/blood , Sputum/cytology , Antibodies, Anti-Idiotypic/therapeutic use , Breath Tests
3.
J Allergy Clin Immunol ; 154(3): 670-678, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38825025

ABSTRACT

BACKGROUND: Eicosanoids are lipid mediators including thromboxanes (TXs), prostaglandins (PGs), and leukotrienes with a pathophysiological role in established atopic disease. However, their role in the inception of disease is unclear. This study aimed to investigate the association between urinary eicosanoids in early life and development of atopic disease. METHODS: This study quantified the levels of 21 eicosanoids in urine from children from the COPSAC2010 (Copenhagen Prospective Studies on Asthma in Childhood 2010) (age 1 year, n = 450) and VDAART (Vitamin D Antenatal Asthma Reduction Trial) (age 3 years, n = 575) mother-child cohorts and analyzed the associations with development of wheeze/asthma, atopic dermatitis, and biomarkers of type-2 inflammation, applying false discovery rate of 5% (FDR5%) multiple testing correction. RESULTS: In both cohorts, analyses adjusted for environmental determinants showed that higher TXA2 eicosanoids in early life were associated with increased risk of developing atopic dermatitis (P < FDR5%) and type-2 inflammation (P < .05). In VDAART, lower PGE2 and PGI2 eicosanoids and higher isoprostanes were also associated with increased risk of atopic dermatitis (P < FDR5%). For wheeze/asthma, analyses in COPSAC2010 showed that lower isoprostanes and PGF2 eicosanoids and higher PGD2 eicosanoids at age 1 year associated with an increased risk at age 1-10 years (P < .05), whereas analyses in VDAART showed that lower PGE2 and higher TXA2 eicosanoids at age 3 years associated with an increased risk at 6 years (P < FDR5%). CONCLUSIONS: This study suggests that early life perturbations in the eicosanoid metabolism are present before the onset of atopic disease in childhood, which provides pathophysiological insight in the inception of atopic diseases.


Subject(s)
Asthma , Dermatitis, Atopic , Eicosanoids , Humans , Eicosanoids/urine , Female , Child, Preschool , Male , Infant , Dermatitis, Atopic/urine , Dermatitis, Atopic/epidemiology , Asthma/urine , Asthma/epidemiology , Biomarkers/urine , Risk Factors , Child
4.
J Allergy Clin Immunol ; 153(4): 954-968, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38295882

ABSTRACT

Studies of asthma and allergy are generating increasing volumes of omics data for analysis and interpretation. The National Institute of Allergy and Infectious Diseases (NIAID) assembled a workshop comprising investigators studying asthma and allergic diseases using omics approaches, omics investigators from outside the field, and NIAID medical and scientific officers to discuss the following areas in asthma and allergy research: genomics, epigenomics, transcriptomics, microbiomics, metabolomics, proteomics, lipidomics, integrative omics, systems biology, and causal inference. Current states of the art, present challenges, novel and emerging strategies, and priorities for progress were presented and discussed for each area. This workshop report summarizes the major points and conclusions from this NIAID workshop. As a group, the investigators underscored the imperatives for rigorous analytic frameworks, integration of different omics data types, cross-disciplinary interaction, strategies for overcoming current limitations, and the overarching goal to improve scientific understanding and care of asthma and allergic diseases.


Subject(s)
Asthma , Hypersensitivity , United States , Humans , National Institute of Allergy and Infectious Diseases (U.S.) , Hypersensitivity/genetics , Asthma/etiology , Genomics , Proteomics , Metabolomics
5.
Thorax ; 79(10): 943-952, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39117420

ABSTRACT

BACKGROUND: Infections in childhood remain a leading global cause of child mortality and environmental exposures seem crucial. We investigated whether urbanicity at birth was associated with the risk of infections and explored underlying mechanisms. METHODS: Children (n=633) from the COPSAC2010 mother-child cohort were monitored daily with symptom diaries of infection episodes during the first 3 years and prospectively diagnosed with asthma until age 6 years. Rural and urban environments were based on the CORINE land cover database. Child airway immune profile was measured at age 4 weeks. Maternal and child metabolomics profiling were assessed at pregnancy week 24 and at birth, respectively. RESULTS: We observed a mean (SD) total number of infections of 16.3 (8.4) consisting mainly of upper respiratory infections until age 3 years. Urban versus rural living increased infection risk (17.1 (8.7) vs 15.2 (7.9), adjusted incidence rate ratio; 1.15 (1.05-1.26), p=0.002) and altered the child airway immune profile, which increased infection risk (principal component 1 (PC1): 1.03 (1.00-1.06), p=0.038 and PC2: 1.04 (1.01-1.07), p=0.022). Urban living also altered the maternal and child metabolomic profiles, which also increased infection risk. The association between urbanicity and infection risk was partly mediated through the maternal metabolomic and child airway immune profiles. Finally, urbanicity increased the risk of asthma by age 6 years, which was mediated through early infection load (pACME<0.001). CONCLUSION: This study suggests urbanicity as an independent risk factor for early infections partly explained by changes in the early metabolic and immunological development with implications for later risk of asthma.


Subject(s)
Asthma , Respiratory Tract Infections , Urban Population , Humans , Female , Child, Preschool , Male , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/immunology , Asthma/epidemiology , Asthma/immunology , Infant , Risk Factors , Pregnancy , Infant, Newborn , Child , Prospective Studies , Rural Population , Environmental Exposure/adverse effects , Prenatal Exposure Delayed Effects , Metabolomics
6.
Metabolomics ; 20(3): 60, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773013

ABSTRACT

Metabolomic epidemiology studies are complex and require a broad array of domain expertise. Although many metabolite-phenotype associations have been identified; to date, few findings have been translated to the clinic. Bridging this gap requires understanding of both the underlying biology of these associations and their potential clinical implications, necessitating an interdisciplinary team approach. To address this need in metabolomic epidemiology, a workshop was held at Metabolomics 2023 in Niagara Falls, Ontario, Canada that highlighted the domain expertise needed to effectively conduct these studies -- biochemistry, clinical science, epidemiology, and assay development for biomarker validation -- and emphasized the role of interdisciplinary teams to move findings towards clinical translation.


Subject(s)
Metabolomics , Translational Research, Biomedical , Metabolomics/methods , Humans , Biomarkers/metabolism , Ontario
7.
Metabolomics ; 20(4): 71, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972029

ABSTRACT

BACKGROUND AND OBJECTIVE: Blood-based small molecule metabolites offer easy accessibility and hold significant potential for insights into health processes, the impact of lifestyle, and genetic variation on disease, enabling precise risk prevention. In a prospective study with records of heart failure (HF) incidence, we present metabolite profiling data from individuals without HF at baseline. METHODS: We uncovered the interconnectivity of metabolites using data-driven and causal networks augmented with polygenic factors. Exploring the networks, we identified metabolite broadcasters, receivers, mediators, and subnetworks corresponding to functional classes of metabolites, and provided insights into the link between metabolomic architecture and regulation in health. We incorporated the network structure into the identification of metabolites associated with HF to control the effect of confounding metabolites. RESULTS: We identified metabolites associated with higher and lower risk of HF incidence, such as glycine, ureidopropionic and glycocholic acids, and LPC 18:2. These associations were not confounded by the other metabolites due to uncovering the connectivity among metabolites and adjusting each association for the confounding metabolites. Examples of our findings include the direct influence of asparagine on glycine, both of which were inversely associated with HF. These two metabolites were influenced by polygenic factors and only essential amino acids, which are not synthesized in the human body and are obtained directly from the diet. CONCLUSION: Metabolites may play a critical role in linking genetic background and lifestyle factors to HF incidence. Revealing the underlying connectivity of metabolites associated with HF strengthens the findings and facilitates studying complex conditions like HF.


Subject(s)
Heart Failure , Metabolomics , Heart Failure/metabolism , Humans , Metabolomics/methods , Male , Female , Prospective Studies , Middle Aged , Metabolome , Aged , Metabolic Networks and Pathways
8.
Metabolomics ; 20(1): 16, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267770

ABSTRACT

INTRODUCTION: Meta-analyses across diverse independent studies provide improved confidence in results. However, within the context of metabolomic epidemiology, meta-analysis investigations are complicated by differences in study design, data acquisition, and other factors that may impact reproducibility. OBJECTIVE: The objective of this study was to identify maternal blood metabolites during pregnancy (> 24 gestational weeks) related to offspring body mass index (BMI) at age two years through a meta-analysis framework. METHODS: We used adjusted linear regression summary statistics from three cohorts (total N = 1012 mother-child pairs) participating in the NIH Environmental influences on Child Health Outcomes (ECHO) Program. We applied a random-effects meta-analysis framework to regression results and adjusted by false discovery rate (FDR) using the Benjamini-Hochberg procedure. RESULTS: Only 20 metabolites were detected in all three cohorts, with an additional 127 metabolites detected in two of three cohorts. Of these 147, 6 maternal metabolites were nominally associated (P < 0.05) with offspring BMI z-scores at age 2 years in a meta-analytic framework including at least two studies: arabinose (Coefmeta = 0.40 [95% CI 0.10,0.70], Pmeta = 9.7 × 10-3), guanidinoacetate (Coefmeta = - 0.28 [- 0.54, - 0.02], Pmeta = 0.033), 3-ureidopropionate (Coefmeta = 0.22 [0.017,0.41], Pmeta = 0.033), 1-methylhistidine (Coefmeta = - 0.18 [- 0.33, - 0.04], Pmeta = 0.011), serine (Coefmeta = - 0.18 [- 0.36, - 0.01], Pmeta = 0.034), and lysine (Coefmeta = - 0.16 [- 0.32, - 0.01], Pmeta = 0.044). No associations were robust to multiple testing correction. CONCLUSIONS: Despite including three cohorts with large sample sizes (N > 100), we failed to identify significant metabolite associations after FDR correction. Our investigation demonstrates difficulties in applying epidemiological meta-analysis to clinical metabolomics, emphasizes challenges to reproducibility, and highlights the need for standardized best practices in metabolomic epidemiology.


Subject(s)
Lysine , Metabolomics , Child , Female , Pregnancy , Humans , Child, Preschool , Body Mass Index , Reproducibility of Results , Linear Models
9.
Allergy ; 79(2): 404-418, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38014461

ABSTRACT

BACKGROUND: While dysregulated sphingolipid metabolism has been associated with risk of childhood asthma, the specific sphingolipid classes and/or mechanisms driving this relationship remain unclear. We aimed to understand the multifaceted role between sphingolipids and other established asthma risk factors that complicate this relationship. METHODS: We performed targeted LC-MS/MS-based quantification of 77 sphingolipids in plasma from 997 children aged 6 years from two independent cohorts (VDAART and COPSAC2010 ). We examined associations of circulatory sphingolipids with childhood asthma, lung function, and three asthma risk factors: functional SNPs in ORMDL3, low vitamin D levels, and reduced gut microbial maturity. Given racial differences between these cohorts, association analyses were performed separately and then meta-analyzed together. RESULTS: We observed elevations in circulatory sphingolipids with asthma phenotypes and risk factors; however, there were differential associations of sphingolipid classes with clinical outcomes and/or risk factors. While elevations from metabolites involved in ceramide recycling and catabolic pathways were associated with asthma and worse lung function [meta p-value range: 1.863E-04 to 2.24E-3], increased ceramide levels were associated with asthma risk factors [meta p-value range: 7.75E-5 to .013], but not asthma. Further investigation identified that some ceramides acted as mediators while some interacted with risk factors in the associations with asthma outcomes. CONCLUSION: This study demonstrates the differential role that sphingolipid subclasses may play in asthma and its risk factors. While overall elevations in sphingolipids appeared to be deleterious overall; elevations in ceramides were uniquely associated with increases in asthma risk factors only; while elevations in asthma phenotypes were associated with recycling sphingolipids. Modification of asthma risk factors may play an important role in regulating sphingolipid homeostasis via ceramides to affect asthma. Further function work may validate the observed associations.


Subject(s)
Asthma , Sphingolipids , Child , Humans , Sphingolipids/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Ceramides/metabolism , Asthma/etiology , Asthma/genetics , Risk Factors
10.
J Allergy Clin Immunol ; 151(6): 1494-1502.e14, 2023 06.
Article in English | MEDLINE | ID: mdl-36649759

ABSTRACT

BACKGROUND: Environmental, genetic, and microbial factors are independently associated with childhood asthma. OBJECTIVE: We sought to determine the roles of environmental exposures and 17q12-21 locus genotype in the maturation of the early-life microbiome in childhood asthma. METHODS: We analyzed fecal 16s rRNA sequencing at age 3 to 6 months and age 1 year to characterize microbial maturation of offspring of participants in the Vitamin D Antenatal Reduction Trial. We determined associations of microbial maturation and environmental exposures in the mediation of asthma risk at age 3 years. We examined 17q12-21 genotype and microbial maturation associations with asthma risk in Vitamin D Antenatal Reduction Trial and the replication cohort Copenhagen Prospective Studies on Childhood Asthma 2010. RESULTS: Accelerated fecal microbial maturation at age 3 to 6 months and delayed maturation at age 1 year were associated with asthma (P < .001). Fecal Bacteroides was reduced at age 3 to 6 months in association with subsequent asthma (P = .006) and among subjects with lower microbial maturation at age 1 year (q = 0.009). Sixty-one percent of the association between breast-feeding and asthma was mediated by microbial maturation at age 3 to 6 months. Microbial maturation and 17q12-21 genotypes exhibited independent, additive effects on childhood asthma risk. CONCLUSIONS: The intestinal microbiome and its maturation mediates associations between environmental exposures including breast-feeding and asthma. The intestinal microbiome and 17q12-21 genotype appear to exert additive and independent effects on childhood asthma risk.


Subject(s)
Asthma , Gastrointestinal Microbiome , Humans , Female , Pregnancy , Infant , Child, Preschool , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Prospective Studies , Asthma/genetics , Vitamin D
11.
J Allergy Clin Immunol ; 151(2): 556-564, 2023 02.
Article in English | MEDLINE | ID: mdl-36400177

ABSTRACT

BACKGROUND: Prior studies suggest that vitamin D may modify the effects of environmental exposures; however, none have investigated gestational vitamin D and cumulative tobacco smoke exposure (TSE) throughout pregnancy and early life. OBJECTIVES: This study investigated the effects of early life TSE on child lung function and the modulatory effects of gestational vitamin D on this association. METHODS: The VDAART (Vitamin D Antenatal Asthma Reduction Trial) recruited nonsmoking pregnant women and followed the mother-child pairs to age 6 years. TSE was assessed with questionnaires and plasma cotinine measurements in the mothers (10-18 and 32-38 gestational weeks) and children (1, 3, and 6 years). Cumulative TSE was calculated from the repeated cotinine measurements. 25-hydroxyvitamin D (25[OH]D) levels were measured at 10-18 and 32-38 gestational weeks. Lung function was assessed at 6 years with spirometry and impulse oscillometry. RESULTS: Of the 476 mother-child pairs, 205 (43%) had increased cotinine levels at ≥1 time point. Cumulative TSE was associated with decreased FEV1 (ß = -0.043 L, P = .018) and increased respiratory resistance at 5 Hz (R5; ß = 0.060 kPa/L/s, P = .002). This association persisted in subjects with insufficient (<30 ng/mL) 25(OH)D levels throughout pregnancy (ß = 0.077 kPa/L/s, P = .016 for R5) but not among those with sufficient levels throughout pregnancy. CONCLUSIONS: Cumulative TSE from pregnancy to childhood is associated with dose- and duration-dependent decreases in child lung function at 6 years even in the absence of reported maternal smoking. Gestational vitamin D may modulate this effect and have therapeutic potential for minimizing the adverse effect of TSE on lung throughout early life. RANDOMIZED TRIAL: Maternal Vitamin D Supplementation to Prevent Childhood Asthma (VDAART); clinicaltrials.gov identifier: NCT00920621.


Subject(s)
Asthma , Nicotiana , Female , Humans , Pregnancy , Child , Cotinine , Vitamin D , Vitamins , Asthma/prevention & control , Lung
12.
J Allergy Clin Immunol ; 152(6): 1646-1657.e11, 2023 12.
Article in English | MEDLINE | ID: mdl-37558060

ABSTRACT

BACKGROUND: Gestational vitamin D deficiency is implicated in development of respiratory diseases in offspring, but the mechanism underlying this relationship is unknown. OBJECTIVE: We sought to study the link between gestational vitamin D exposure and childhood asthma phenotypes using maternal blood metabolomics profiling. METHODS: Untargeted blood metabolic profiles were acquired using liquid chromatography-mass spectrometry at 1 week postpartum from 672 women in the Copenhagen Prospective Studies on Asthma in Childhood2010 (COPSAC2010) mother-child cohort and at pregnancy weeks 32 to 38 from 779 women in the Vitamin D Antenatal Asthma Reduction Trial (VDAART) mother-child cohort. In COPSAC2010, we employed multivariate models and pathway enrichment analysis to identify metabolites and pathways associated with gestational vitamin D blood levels and investigated their relationship with development of asthma phenotypes in early childhood. The findings were validated in VDAART and in cellular models. RESULTS: In COPSAC2010, higher vitamin D blood levels at 1 week postpartum were associated with distinct maternal metabolome perturbations with significant enrichment of the sphingomyelin pathway (P < .01). This vitamin D-related maternal metabolic profile at 1 week postpartum containing 46 metabolites was associated with decreased risk of recurrent wheeze (hazard ratio [HR] = 0.92 [95% CI 0.86-0.98], P = .01) and wheeze exacerbations (HR = 0.90 [95% CI 0.84-0.97], P = .01) at ages 0 to 3 years. The same metabolic profile was similarly associated with decreased risk of asthma/wheeze at ages 0 to 3 in VDAART (odds ratio = 0.92 [95% CI 0.85-0.99], P = .04). Human bronchial epithelial cells treated with high-dose vitamin D3 showed an increased cytoplasmic sphingolipid level (P < .01). CONCLUSIONS: This exploratory metabolomics study in 2 independent birth cohorts demonstrates that the beneficial effect of higher gestational vitamin D exposure on offspring respiratory health is characterized by specific maternal metabolic alterations during pregnancy, which involves the sphingomyelin pathway.


Subject(s)
Asthma , Vitamin D , Child, Preschool , Female , Humans , Pregnancy , Metabolome , Prospective Studies , Respiratory Sounds , Sphingomyelins , Clinical Trials as Topic
13.
J Allergy Clin Immunol ; 152(6): 1423-1432, 2023 12.
Article in English | MEDLINE | ID: mdl-37595761

ABSTRACT

BACKGROUND: Asthma and chronic obstructive pulmonary disease (COPD) have distinct and overlapping genetic and clinical features. OBJECTIVE: We sought to test the hypothesis that polygenic risk scores (PRSs) for asthma (PRSAsthma) and spirometry (FEV1 and FEV1/forced vital capacity; PRSspiro) would demonstrate differential associations with asthma, COPD, and asthma-COPD overlap (ACO). METHODS: We developed and tested 2 asthma PRSs and applied the higher performing PRSAsthma and a previously published PRSspiro to research (Genetic Epidemiology of COPD study and Childhood Asthma Management Program, with spirometry) and electronic health record-based (Mass General Brigham Biobank and Genetic Epidemiology Research on Adult Health and Aging [GERA]) studies. We assessed the association of PRSs with COPD and asthma using modified random-effects and binary-effects meta-analyses, and ACO and asthma exacerbations in specific cohorts. Models were adjusted for confounders and genetic ancestry. RESULTS: In meta-analyses of 102,477 participants, the PRSAsthma (odds ratio [OR] per SD, 1.16 [95% CI, 1.14-1.19]) and PRSspiro (OR per SD, 1.19 [95% CI, 1.17-1.22]) both predicted asthma, whereas the PRSspiro predicted COPD (OR per SD, 1.25 [95% CI, 1.21-1.30]). However, results differed by cohort. The PRSspiro was not associated with COPD in GERA and Mass General Brigham Biobank. In the Genetic Epidemiology of COPD study, the PRSAsthma (OR per SD: Whites, 1.3; African Americans, 1.2) and PRSspiro (OR per SD: Whites, 2.2; African Americans, 1.6) were both associated with ACO. In GERA, the PRSAsthma was associated with asthma exacerbations (OR, 1.18) in Whites; the PRSspiro was associated with asthma exacerbations in White, LatinX, and East Asian participants. CONCLUSIONS: PRSs for asthma and spirometry are both associated with ACO and asthma exacerbations. Genetic prediction performance differs in research versus electronic health record-based cohorts.


Subject(s)
Asthma , Pulmonary Disease, Chronic Obstructive , Adult , Humans , Child , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/genetics , Asthma/epidemiology , Asthma/genetics , Vital Capacity , Respiratory Function Tests , Forced Expiratory Volume
14.
Thorax ; 78(5): 432-441, 2023 05.
Article in English | MEDLINE | ID: mdl-35501119

ABSTRACT

INTRODUCTION: Older adults have the greatest burden of asthma and poorest outcomes. The pharmacogenetics of inhaled corticosteroid (ICS) treatment response is not well studied in older adults. METHODS: A genome-wide association study of ICS response was performed in asthmatics of European ancestry in Genetic Epidemiology Research on Adult Health and Aging (GERA) by fitting Cox proportional hazards regression models, followed by validation in the Mass General Brigham (MGB) Biobank and Rotterdam Study. ICS response was measured using two definitions in asthmatics on ICS treatment: (1) absence of oral corticosteroid (OCS) bursts using prescription records and (2) absence of asthma-related exacerbations using diagnosis codes. A fixed-effect meta-analysis was performed for each outcome. The validated single-nucleotide polymorphisms (SNPs) were functionally annotated to standard databases. RESULTS: In 5710 subjects in GERA, 676 subjects in MGB Biobank, and 465 subjects in the Rotterdam Study, four novel SNPs on chromosome six near PTCHD4 validated across all cohorts and met genome-wide significance on meta-analysis for the OCS burst outcome. In 4541 subjects in GERA and 505 subjects in MGB Biobank, 152 SNPs with p<5 × 10-5 were validated across these two cohorts for the asthma-related exacerbation outcome. The validated SNPs included methylation and expression quantitative trait loci for CPED1, CRADD and DST for the OCS burst outcome and GM2A, SNW1, CACNA1C, DPH1, and RPS10 for the asthma-related exacerbation outcome. CONCLUSIONS: Multiple novel SNPs associated with ICS response were identified in older adult asthmatics. Several SNPs annotated to genes previously associated with asthma and other airway or allergic diseases, including PTCHD4.


Subject(s)
Anti-Asthmatic Agents , Asthma , Humans , Aged , Genome-Wide Association Study , Administration, Inhalation , Asthma/drug therapy , Asthma/genetics , Asthma/epidemiology , Adrenal Cortex Hormones/therapeutic use
15.
Eur Respir J ; 61(1)2023 01.
Article in English | MEDLINE | ID: mdl-35953101

ABSTRACT

BACKGROUND: Sex differences related to immune responses can influence atopic manifestations in childhood asthma. While genome-wide association studies have investigated a sex-specific genetic architecture of the immune response, gene-by-sex interactions have not been extensively analysed for atopy-related markers including allergy skin tests, IgE and eosinophils in asthmatic children. METHODS: We performed a genome-wide gene-by-sex interaction analysis for atopy-related markers using whole-genome sequencing data based on 889 trios from the Genetic Epidemiology of Asthma in Costa Rica Study (GACRS) and 284 trios from the Childhood Asthma Management Program (CAMP). We also tested the findings in UK Biobank participants with self-reported childhood asthma. Furthermore, downstream analyses in GACRS integrated gene expression to disentangle observed associations. RESULTS: Single nucleotide polymorphism (SNP) rs1255383 at 10q11.21 demonstrated a genome-wide significant gene-by-sex interaction (pinteraction=9.08×10-10) for atopy (positive skin test) with opposite direction of effects between females and males. In the UK Biobank participants with a history of childhood asthma, the signal was consistently observed with the same sex-specific effect directions for high eosinophil count (pinteraction=0.0058). Gene expression of ZNF33B (zinc finger protein 33B), located at 10q11.21, was moderately associated with atopy in girls, but not in boys. CONCLUSIONS: We report SNPs in/near a zinc finger gene as novel sex-differential loci for atopy-related markers with opposite effect directions in females and males. A potential role for ZNF33B should be studied further as an important driver of sex-divergent features of atopy in childhood asthma.


Subject(s)
Asthma , Hypersensitivity, Immediate , Child , Humans , Male , Female , Genome-Wide Association Study , Immunoglobulin E , Asthma/epidemiology , Hypersensitivity, Immediate/genetics , Hypersensitivity, Immediate/epidemiology , Eosinophils , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease
16.
Respir Res ; 24(1): 63, 2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36842969

ABSTRACT

BACKGROUND: Asthma is a heterogeneous disease with high morbidity. Advancement in high-throughput multi-omics approaches has enabled the collection of molecular assessments at different layers, providing a complementary perspective of complex diseases. Numerous computational methods have been developed for the omics-based patient classification or disease outcome prediction. Yet, a systematic benchmarking of those methods using various combinations of omics data for the prediction of asthma development is still lacking. OBJECTIVE: We aimed to investigate the computational methods in disease status prediction using multi-omics data. METHOD: We systematically benchmarked 18 computational methods using all the 63 combinations of six omics data (GWAS, miRNA, mRNA, microbiome, metabolome, DNA methylation) collected in The Vitamin D Antenatal Asthma Reduction Trial (VDAART) cohort. We evaluated each method using standard performance metrics for each of the 63 omics combinations. RESULTS: Our results indicate that overall Logistic Regression, Multi-Layer Perceptron, and MOGONET display superior performance, and the combination of transcriptional, genomic and microbiome data achieves the best prediction. Moreover, we find that including the clinical data can further improve the prediction performance for some but not all the omics combinations. CONCLUSIONS: Specific omics combinations can reach the optimal prediction of asthma development in children. And certain computational methods showed superior performance than other methods.


Subject(s)
Asthma , MicroRNAs , Pregnancy , Humans , Female , Child , Benchmarking , Genomics/methods , Asthma/diagnosis , Asthma/epidemiology , Asthma/genetics , Prognosis
17.
Allergy ; 78(2): 512-521, 2023 02.
Article in English | MEDLINE | ID: mdl-36448508

ABSTRACT

BACKGROUND: Intestinal microenvironmental perturbations may increase food allergy risk. We hypothesize that children with clinical food allergy, those with food sensitization, and healthy children can be differentiated by intestinal metabolites in the first years of life. METHODS: In this ancillary analysis of the Vitamin D Antenatal Asthma Reduction Trial (VDAART), we performed untargeted metabolomic profiling in 824 stool samples collected at ages 3-6 months, 1 year and 3 years. Subjects included 23 with clinical food allergy at age 3 and/or 6 years, 151 with food sensitization but no clinical food allergy, and 220 controls. We identified modules of correlated, functionally related metabolites and sought associations of metabolite modules and individual metabolites with food allergy/sensitization using regression models. RESULTS: Several modules of functionally related intestinal metabolites were reduced among subjects with food allergy, including bile acids at ages 3-6 months and 1 year, amino acids at age 3-6 months, steroid hormones at 1 year, and sphingolipids at age 3 years. One module primarily containing diacylglycerols was increased in those with food allergy at age 3-6 months. Fecal caffeine metabolites at age 3-6 months, likely derived from breast milk, were increased in those with food allergy and/or sensitization (beta = 5.9, 95% CI 1.0-10.8, p = .02) and were inversely correlated with fecal bile acids and bilirubin metabolites, though maternal plasma caffeine levels were not associated with food allergy and/or sensitization. CONCLUSIONS: Several classes of bioactive fecal metabolites are associated with food allergy and/or sensitization including bile acids, steroid hormones, sphingolipids, and caffeine metabolites.


Subject(s)
Caffeine , Food Hypersensitivity , Child , Humans , Female , Pregnancy , Child, Preschool , Infant , Food Hypersensitivity/diagnosis , Metabolomics , Allergens , Milk, Human , Sphingolipids
18.
Allergy ; 78(2): 418-428, 2023 02.
Article in English | MEDLINE | ID: mdl-36107703

ABSTRACT

BACKGROUND: The infant fecal microbiome is known to impact subsequent asthma risk, but the environmental exposures impacting this association, the role of the maternal microbiome, and how the microbiome impacts different childhood asthma phenotypes are unknown. METHODS: Our objective was to identify associations between features of the prenatal and early-life fecal microbiomes and child asthma phenotypes. We analyzed fecal 16 s rRNA microbiome profiling and fecal metabolomic profiling from stool samples collected from mothers during the third trimester of pregnancy (n = 120) and offspring at ages 3-6 months (n = 265), 1 (n = 436) and 3 years (n = 506) in a total of 657 mother-child pairs participating in the Vitamin D Antenatal Asthma Reduction Trial. We used clinical data from birth to age 6 years to characterize subjects with asthma as having early, transient or active asthma phenotypes. In addition to identifying specific genera that were robustly associated with asthma phenotypes in multiple covariate-adjusted models, we clustered subjects by their longitudinal microbiome composition and sought associations between fecal metabolites and relevant microbiome and clinical features. RESULTS: Seven maternal and two infant fecal microbial taxa were robustly associated with at least one asthma phenotype, and a longitudinal gut microenvironment profile was associated with early asthma (Fisher exact test p = .03). Though mode of delivery was not directly associated with asthma, we found substantial evidence for a pathway whereby cesarean section reduces fecal Bacteroides and microbial sphingolipids, increasing susceptibility to early asthma. CONCLUSION: Overall, our results suggest that the early-life, including prenatal, fecal microbiome modifies risk of asthma, especially asthma with onset by age 3 years.


Subject(s)
Asthma , Gastrointestinal Microbiome , Microbiota , Female , Pregnancy , Humans , Cesarean Section , Asthma/diagnosis , Asthma/epidemiology , Asthma/etiology , Phenotype
19.
Brain Behav Immun ; 111: 21-29, 2023 07.
Article in English | MEDLINE | ID: mdl-37004757

ABSTRACT

Autism Spectrum Disorder (ASD) is a heterogeneous condition that includes a broad range of characteristics and associated comorbidities; however, the biology underlying the variability in phenotypes is not well understood. As ASD impacts approximately 1 in 100 children globally, there is an urgent need to better understand the biological mechanisms that contribute to features of ASD. In this study, we leveraged rich phenotypic and diagnostic information related to ASD in 2001 individuals aged 4 to 17 years from the Simons Simplex Collection to derive phenotypically driven subgroups and investigate their respective metabolomes. We performed hierarchical clustering on 40 phenotypes spanning four ASD clinical domains, resulting in three subgroups with distinct phenotype patterns. Using global plasma metabolomic profiling generated by ultrahigh-performance liquid chromatography mass spectrometry, we characterized the metabolome of individuals in each subgroup to interrogate underlying biology related to the subgroups. Subgroup 1 included children with the least maladaptive behavioral traits (N = 862); global decreases in lipid metabolites and concomitant increases in amino acid and nucleotide pathways were observed for children in this subgroup. Subgroup 2 included children with the highest degree of challenges across all phenotype domains (N = 631), and their metabolome profiles demonstrated aberrant metabolism of membrane lipids and increases in lipid oxidation products. Subgroup 3 included children with maladaptive behaviors and co-occurring conditions that showed the highest IQ scores (N = 508); these individuals had increases in sphingolipid metabolites and fatty acid byproducts. Overall, these findings indicated distinct metabolic patterns within ASD subgroups, which may reflect the biological mechanisms giving rise to specific patterns of ASD characteristics. Our results may have important clinical applications relevant to personalized medicine approaches towards managing ASD symptoms.


Subject(s)
Autism Spectrum Disorder , Humans , Autism Spectrum Disorder/complications , Metabolomics/methods , Metabolome , Phenotype , Lipids
20.
Pediatr Allergy Immunol ; 34(2): e13917, 2023 02.
Article in English | MEDLINE | ID: mdl-36825739

ABSTRACT

BACKGROUND: Evidence suggests maternal pregnancy dietary intake and nutrition in the early postnatal period to be of importance for the newborn child's health. However, studies investigating diet-related metabolites transferred from mother to child on disease risk in childhood are lacking. We sought to investigate the influence of vertically transferred metabolites on risk of atopic diseases and infections during preschool age. METHODS: In the Danish population-based COPSAC2010 mother-child cohort, information on 10 diet-related vertically transferred metabolites from metabolomics profiles of dried blood spots (DBS) at age 2-3 days was analyzed in relation to the risk of childhood asthma, allergy, eczema, and infections using principal component and single metabolite analyses. RESULTS: In 678 children with DBS measurements, a coffee-related metabolite profile reflected by principal component 1 was inversely associated with risk of asthma (odds ratio (95% CI) 0.78 (0.64; 0.95), p = .014) and eczema at age 6 years (0.79 (0.65; 0.97), p = .022). Furthermore, increasing stachydrine (fruit-related), 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (fish-related), and ergothioneine (fruit-, green vegetables-, and fish-related) levels were all significantly associated with reduced risks of infections at age 0-3 years (p < .05). CONCLUSION: This study demonstrates associations between pregnancy diet-related vertically transferred metabolites measured in children in early life and risk of atopic diseases and infections in childhood. The specific metabolites associated with a reduced disease risk in children may contribute to the characterization of a healthy nutritional profile in pregnancy using a metabolomics-based unbiased tool for predicting childhood health.


Subject(s)
Asthma , Eczema , Hypersensitivity , Prenatal Exposure Delayed Effects , Pregnancy , Animals , Child, Preschool , Female , Humans , Infectious Disease Transmission, Vertical , Asthma/epidemiology , Eczema/epidemiology , Diet
SELECTION OF CITATIONS
SEARCH DETAIL