ABSTRACT
ARID1A (BAF250a) is a component of the SWI/SNF chromatin modifying complex, plays an important tumour suppressor role, and is considered prognostic in several malignancies. However, in ovarian carcinomas there are contradictory reports on its relationship to outcome, immune response, and correlation with clinicopathological features. We assembled a series of 1623 endometriosis-associated ovarian carcinomas, including 1078 endometrioid (ENOC) and 545 clear cell (CCOC) ovarian carcinomas, through combining resources of the Ovarian Tumor Tissue Analysis (OTTA) Consortium, the Canadian Ovarian Unified Experimental Resource (COEUR), local, and collaborative networks. Validated immunohistochemical surrogate assays for ARID1A mutations were applied to all samples. We investigated associations between ARID1A loss/mutation, clinical features, outcome, CD8+ tumour-infiltrating lymphocytes (CD8+ TILs), and DNA mismatch repair deficiency (MMRd). ARID1A loss was observed in 42% of CCOCs and 25% of ENOCs. We found no associations between ARID1A loss and outcomes, stage, age, or CD8+ TIL status in CCOC. Similarly, we found no association with outcome or stage in endometrioid cases. In ENOC, ARID1A loss was more prevalent in younger patients (p = 0.012) and was associated with MMRd (p < 0.001) and the presence of CD8+ TILs (p = 0.008). Consistent with MMRd being causative of ARID1A mutations, in a subset of ENOCs we also observed an association with ARID1A loss-of-function mutation as a result of small indels (p = 0.035, versus single nucleotide variants). In ENOC, the association with ARID1A loss, CD8+ TILs, and age appears confounded by MMRd status. Although this observation does not explicitly rule out a role for ARID1A influence on CD8+ TIL infiltration in ENOC, given current knowledge regarding MMRd, it seems more likely that effects are dominated by the hypermutation phenotype. This large dataset with consistently applied biomarker assessment now provides a benchmark for the prevalence of ARID1A loss-of-function mutations in endometriosis-associated ovarian cancers and brings clarity to the prognostic significance. © 2021 The Pathological Society of Great Britain and Ireland.
Subject(s)
Carcinoma , Endometriosis , Ovarian Neoplasms , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Brain Neoplasms , CD8-Positive T-Lymphocytes/pathology , Canada , Colorectal Neoplasms , DNA-Binding Proteins/genetics , Endometriosis/genetics , Endometriosis/pathology , Female , Humans , Neoplastic Syndromes, Hereditary , Nuclear Proteins/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Prognosis , Transcription Factors/geneticsABSTRACT
BACKGROUND: Ovarian clear cell carcinoma (OCCC) is a rare ovarian cancer histotype that tends to be resistant to standard platinum-based chemotherapeutics. We sought to better understand the role of DNA methylation in clinical and biological subclassification of OCCC. METHODS: We interrogated genome-wide methylation using DNA from fresh frozen tumors from 271 cases, applied nonsmooth nonnegative matrix factorization (nsNMF) clustering, and evaluated clinical associations and biological pathways. RESULTS: Two approximately equally sized clusters that associated with several clinical features were identified. Compared with Cluster 2 (N = 137), Cluster 1 cases (N = 134) presented at a more advanced stage, were less likely to be of Asian ancestry, and tended to have poorer outcomes including macroscopic residual disease following primary debulking surgery (P < 0.10). Subset analyses of targeted tumor sequencing and IHC data revealed that Cluster 1 tumors showed TP53 mutation and abnormal p53 expression, and Cluster 2 tumors showed aneuploidy and ARID1A/PIK3CA mutation (P < 0.05). Cluster-defining CpGs included 1,388 CpGs residing within 200 bp of the transcription start sites of 977 genes; 38% of these genes (N = 369 genes) were differentially expressed across cluster in transcriptomic subset analysis (P < 10-4). Differentially expressed genes were enriched for six immune-related pathways, including IFNα and IFNγ responses (P < 10-6). CONCLUSIONS: DNA methylation clusters in OCCC correlate with disease features and gene expression patterns among immune pathways. IMPACT: This work serves as a foundation for integrative analyses that better understand the complex biology of OCCC in an effort to improve potential for development of targeted therapeutics.
Subject(s)
Adenocarcinoma, Clear Cell/genetics , DNA Methylation , Ovarian Neoplasms/genetics , Adenocarcinoma, Clear Cell/ethnology , Adenocarcinoma, Clear Cell/pathology , Adult , Aged , Aged, 80 and over , Aneuploidy , Class I Phosphatidylinositol 3-Kinases/genetics , CpG Islands/genetics , DNA-Binding Proteins/genetics , Disease Progression , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Middle Aged , Mutation , Neoplasm Staging , Ovarian Neoplasms/ethnology , Ovarian Neoplasms/pathology , Prognosis , Transcription Factors/genetics , Tumor Suppressor Protein p53/geneticsABSTRACT
PURPOSE: To identify molecular subclasses of clear cell ovarian carcinoma (CCOC) and assess their impact on clinical presentation and outcomes. EXPERIMENTAL DESIGN: We profiled 421 primary CCOCs that passed quality control using a targeted deep sequencing panel of 163 putative CCOC driver genes and whole transcriptome sequencing of 211 of these tumors. Molecularly defined subgroups were identified and tested for association with clinical characteristics and overall survival. RESULTS: We detected a putative somatic driver mutation in at least one candidate gene in 95% (401/421) of CCOC tumors including ARID1A (in 49% of tumors), PIK3CA (49%), TERT (20%), and TP53 (16%). Clustering of cancer driver mutations and RNA expression converged upon two distinct subclasses of CCOC. The first was dominated by ARID1A-mutated tumors with enriched expression of canonical CCOC genes and markers of platinum resistance; the second was largely comprised of tumors with TP53 mutations and enriched for the expression of genes involved in extracellular matrix organization and mesenchymal differentiation. Compared with the ARID1A-mutated group, women with TP53-mutated tumors were more likely to have advanced-stage disease, no antecedent history of endometriosis, and poorer survival, driven by their advanced stage at presentation. In women with ARID1A-mutated tumors, there was a trend toward a lower rate of response to first-line platinum-based therapy. CONCLUSIONS: Our study suggests that CCOC consists of two distinct molecular subclasses with distinct clinical presentation and outcomes, with potential relevance to both traditional and experimental therapy responsiveness. See related commentary by Lheureux, p. 4838.
Subject(s)
Adenocarcinoma, Clear Cell , Endometriosis , Ovarian Neoplasms , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Adenocarcinoma, Clear Cell/drug therapy , Adenocarcinoma, Clear Cell/genetics , Mutation , Endometriosis/genetics , Endometriosis/pathologyABSTRACT
PROBLEM: Previous studies identified circulating CD14+ HLA-DRlo/- monocytic cells as an immune suppressive subset in solid malignancies, such as prostate, renal cell carcinoma, and pancreatic cancer. Such monocytic cells have been implicated not only in tumour progression but also as a potential barrier for immunotherapy. This study examined the relationship between the frequency of circulating monocytic cells and epithelial ovarian cancer (EOC) progression pre- and post-frontline chemotherapy, defined by disease stage, which is a leading prognostic factor for this malignancy. METHOD OF STUDY: Incident cases of 236 women with EOC were recruited and comprehensive flow cytometry was utilized to assess the frequency of peripheral blood CD33+ CD11b+ HLA-DR-/low CD14+ CD15- monocytic cells, henceforth termed CD14+ HLA-DRlo/- monocytic cells, prior to and after completion of frontline chemotherapy. Multivariable odds ratios (OR) were used to estimate the association between CD14+ HLA-DRlo/- monocytic cell percentages and disease stage. Wilcoxon signed-rank tests evaluated changes in these monocytic cell levels pre- and post-chemotherapy in a patient subset (n = 70). RESULTS: Patients with elevated frequencies of circulating CD14+ HLA-DRlo/- monocytic cells at diagnosis were at 3.33-fold greater odds of having advanced stage (III/IV) EOC (CI: 1.04-10.64), with a significant trend in increasing CD14+ HLA-DRlo/- monocytic cell levels (P = .04). There was a 2.02% median decrease of these monocytic cells post-chemotherapy among a subset of patients with advanced stage disease (P < .0001). CONCLUSION: These findings support the potential clinical relevance of CD14+ HLA-DRlo/- monocytic cells in EOC for prognosis and may indicate a non-invasive biomarker to measure disease progression.
Subject(s)
Epithelial Cells/pathology , Imides/immunology , Ovarian Neoplasms/immunology , Polyphosphates/immunology , Aged , Biomarkers , Carcinogenesis , Disease Progression , Female , HLA-DR Antigens/metabolism , Humans , Immune Tolerance , Lipopolysaccharide Receptors/metabolism , Middle Aged , Neoplasm Staging , Ovarian Neoplasms/diagnosis , PrognosisABSTRACT
Parathyroid hormone-related protein (PTHrP)(1-36) increases lumbar spine (LS) bone mineral density (BMD), acting as an anabolic agent when injected intermittently, but it has not been directly compared with parathyroid hormone (PTH)(1-34). We performed a 3-month randomized, prospective study in 105 postmenopausal women with low bone density or osteoporosis, comparing daily subcutaneous injections of PTHrP(1-36) to PTH(1-34). Thirty-five women were randomized to each of three groups: PTHrP(1-36) 400 µg/day; PTHrP(1-36) 600 µg/day; and PTH(1-34) 20 µg/day. The primary outcome measures were changes in amino-terminal telopeptides of procollagen 1 (PINP) and carboxy-terminal telopeptides of collagen 1 (CTX). Secondary measures included safety parameters, 1,25(OH)2 vitamin D, and BMD. The increase in bone resorption (CTX) by PTH(1-34) (92%) (p < 0.005) was greater than for PTHrP(1-36) (30%) (p < 0.05). PTH(1-34) also increased bone formation (PINP) (171%) (p < 0.0005) more than either dose of PTHrP(1-36) (46% and 87%). The increase in PINP was earlier (day 15) and greater than the increase in CTX for all three groups. LS BMD increased equivalently in each group (p < 0.05 for all). Total hip (TH) and femoral neck (FN) BMD increased equivalently in each group but were only significant for the two doses of PTHrP(1-36) (p < 0.05) at the TH and for PTHrP(1-36) 400 (p < 0.05) at the FN. PTHrP(1-36) 400 induced mild, transient (day 15) hypercalcemia. PTHrP(1-36) 600 required a dose reduction for hypercalcemia in three subjects. PTH(1-34) was not associated with hypercalcemia. Each peptide induced a marked biphasic increase in 1,25(OH)2 D. Adverse events (AE) were similar among the three groups. This study demonstrates that PTHrP(1-36) and PTH(1-34) cause similar increases in LS BMD. PTHrP(1-36) also increased hip BMD. PTH(1-34) induced greater changes in bone turnover than PTHrP(1-36). PTHrP(1-36) was associated with mild transient hypercalcemia. Longer-term studies using lower doses of PTHrP(1-36) are needed to define both the optimal dose and full clinical benefits of PTHrP. © 2013 American Society for Bone and Mineral Research.