Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cell ; 175(6): 1620-1633.e13, 2018 11 29.
Article in English | MEDLINE | ID: mdl-30415836

ABSTRACT

Fibroblasts are an essential cellular and structural component of our organs. Despite several advances, the critical behaviors that fibroblasts utilize to maintain their homeostasis in vivo have remained unclear. Here, by tracking the same skin fibroblasts in live mice, we show that fibroblast position is stable over time and that this stability is maintained despite the loss of neighboring fibroblasts. In contrast, fibroblast membranes are dynamic during homeostasis and extend to fill the space of lost neighboring fibroblasts in a Rac1-dependent manner. Positional stability is sustained during aging despite a progressive accumulation of gaps in fibroblast nuclei organization, while membrane occupancy continues to be maintained. This work defines positional stability and cell occupancy as key principles of skin fibroblast homeostasis in vivo, throughout the lifespan of mice, and identifies membrane extension in the absence of migration as the core cellular mechanism to carry out these principles.


Subject(s)
Cell Membrane/metabolism , Cell Nucleus/metabolism , Fibroblasts/metabolism , Homeostasis/physiology , Skin/metabolism , Animals , Cell Membrane/genetics , Cell Nucleus/genetics , Cells, Cultured , Fibroblasts/cytology , Mice , Mice, Transgenic , Skin/cytology
2.
Nat Cell Biol ; 23(5): 476-484, 2021 05.
Article in English | MEDLINE | ID: mdl-33958758

ABSTRACT

Organs consist of multiple cell types that ensure proper architecture and function. How different cell types coexist and interact to maintain their homeostasis in vivo remains elusive. The skin epidermis comprises mostly epithelial cells, but also harbours Langerhans cells (LCs) and dendritic epidermal T cells (DETCs). Whether and how distributions of LCs and DETCs are regulated during homeostasis is unclear. Here, by tracking individual cells in the skin of live adult mice over time, we show that LCs and DETCs actively maintain a non-random spatial distribution despite continuous turnover of neighbouring basal epithelial cells. Moreover, the density of epithelial cells regulates the composition of LCs and DETCs in the epidermis. Finally, LCs require the GTPase Rac1 to maintain their positional stability, density and tiling pattern reminiscent of neuronal self-avoidance. We propose that these cellular mechanisms provide the epidermis with an optimal response to environmental insults.


Subject(s)
Epidermal Cells/cytology , Epidermis/metabolism , Skin/cytology , T-Lymphocytes/immunology , Animals , Epidermal Cells/immunology , Epidermis/immunology , Homeostasis/immunology , Homeostasis/physiology , Intercellular Junctions/pathology , Mice, Transgenic , Skin/immunology
SELECTION OF CITATIONS
SEARCH DETAIL