Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Proc Natl Acad Sci U S A ; 117(9): 4565-4570, 2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32060125

ABSTRACT

The local structure of the highly "overdoped" 95 K superconductor Sr2CuO3.3 determined by Cu K X-ray absorption fine structure (XAFS) at 62 K in magnetically oriented samples shows that 1) the magnetization is perpendicular to the c axis; 2) at these levels of precision the Cu sublattice is tetragonal in agreement with the crystal structure; the O sublattice has 3) continuous -Cu-O- chains that orient perpendicular to an applied magnetic field; 4) approximately half-filled -Cu-O- chains that orient parallel to this field; 5) a substantial number of apical O vacancies; 6) O ions at some apical positions with expanded Cu-O distances; and 7) interstitial positions that imply highly displaced Sr ions. These results contradict the universally accepted features of cuprates that require intact CuO2 planes, magnetization along the c axis, and a termination of the superconductivity when the excess charge on the CuO2 Cu ions exceeds 0.27. These radical differences in charge and structure demonstrate that this compound constitutes a separate class of Cu-O-based superconductors in which the superconductivity originates in a different, more complicated structural unit than CuO2 planes while retaining exceptionally high transition temperatures.

2.
J Synchrotron Radiat ; 27(Pt 2): 446-454, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32153283

ABSTRACT

X-ray absorption spectroscopy (XAS) beamlines worldwide are steadily increasing their emphasis on full photon-in/photon-out spectroscopies, such as resonant inelastic X-ray scattering (RIXS), resonant X-ray emission spectroscopy (RXES) and high energy resolution fluorescence detection XAS (HERFD-XAS). In such cases, each beamline must match the choice of emission spectrometer to the scientific mission of its users. Previous work has recently reported a miniature tender X-ray spectrometer using a dispersive Rowland refocusing (DRR) geometry that functions with high energy resolution even with a large X-ray spot size on the sample [Holden et al. (2017). Rev. Sci. Instrum. 88, 073904]. This instrument has been used in the laboratory in multiple studies of non-resonant X-ray emission spectroscopy using a conventional X-ray tube, though only for preliminary measurements at a low-intensity microfocus synchrotron beamline. This paper reports an extensive study of the performance of a miniature DRR spectrometer at an unfocused wiggler beamline, where the incident monochromatic flux allows for resonant studies which are impossible in the laboratory. The results support the broader use of the present design and also suggest that the DRR method with an unfocused beam could have important applications for materials with low radiation damage thresholds and that would not survive analysis on focused beamlines.

3.
Nat Methods ; 11(5): 545-8, 2014 May.
Article in English | MEDLINE | ID: mdl-24633409

ABSTRACT

X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and without radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract meaningful high-resolution signals from fewer diffraction measurements.


Subject(s)
Lasers , Macromolecular Substances/chemistry , Bacillus/enzymology , Calcium/chemistry , Calibration , Computer Simulation , Crystallization , Crystallography, X-Ray , Electrons , Equipment Design , Likelihood Functions , Models, Chemical , Molecular Conformation , Muramidase/chemistry , Nanotechnology , Reproducibility of Results , Software , Thermolysin/chemistry , X-Rays , Zinc/chemistry
4.
Proc Natl Acad Sci U S A ; 109(47): 19103-7, 2012 Nov 20.
Article in English | MEDLINE | ID: mdl-23129631

ABSTRACT

The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this "probe-before-destroy" approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as well as the ligand environment, critical for understanding the functional role of redox-active metal sites. Kß(1,3) XES spectra of Mn(II) and Mn(2)(III,IV) complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to >100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. The technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II.

5.
Proc Natl Acad Sci U S A ; 109(25): 9721-6, 2012 Jun 19.
Article in English | MEDLINE | ID: mdl-22665786

ABSTRACT

Most of the dioxygen on earth is generated by the oxidation of water by photosystem II (PS II) using light from the sun. This light-driven, four-photon reaction is catalyzed by the Mn(4)CaO(5) cluster located at the lumenal side of PS II. Various X-ray studies have been carried out at cryogenic temperatures to understand the intermediate steps involved in the water oxidation mechanism. However, the necessity for collecting data at room temperature, especially for studying the transient steps during the O-O bond formation, requires the development of new methodologies. In this paper we report room temperature X-ray diffraction data of PS II microcrystals obtained using ultrashort (< 50 fs) 9 keV X-ray pulses from a hard X-ray free electron laser, namely the Linac Coherent Light Source. The results presented here demonstrate that the "probe before destroy" approach using an X-ray free electron laser works even for the highly-sensitive Mn(4)CaO(5) cluster in PS II at room temperature. We show that these data are comparable to those obtained in synchrotron radiation studies as seen by the similarities in the overall structure of the helices, the protein subunits and the location of the various cofactors. This work is, therefore, an important step toward future studies for resolving the structure of the Mn(4)CaO(5) cluster without any damage at room temperature, and of the reaction intermediates of PS II during O-O bond formation.


Subject(s)
Crystallography, X-Ray/methods , Photosystem II Protein Complex/chemistry , Catalysis , Crystallization , Models, Molecular
6.
J Struct Biol ; 166(3): 272-87, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19422071

ABSTRACT

We find that the spoon-like tips of the chelipeds (large claws) of the crab Pachygrapsus crassipes differ from the rest of the claw in that they are not calcified, but instead contain about 1% bromine--thus they represent a new example of a class of structural biological materials that contain heavy elements such as Zn, Mn, Fe, Cu, and Br bound in an organic matrix. X-ray absorption spectroscopy data suggest that the bromine is bound to phenyl rings, possibly in tyrosine. We measure a broad array of mechanical properties of a heavy-element biological material for the first time (abrasion resistance, coefficient of kinetic friction, energy of fracture, hardness, modulus of elasticity and dynamic mechanical properties), and we make a direct comparison with a mineralized tissue. Our results suggest that the greatest advantage of bromine-rich cuticle over calcified cuticle is resistance to fracture (the energy of fracture is about an order of magnitude greater than for calcified cuticle). The greatest advantage relative to unenriched cuticle, represented by ant mandible cuticle, is a factor of about 1.5 greater hardness and modulus of elasticity.The spoon-like tips gain additional fracture resistance from the orientation of the constituent laminae and from the viscoelasticity of the material. We suggest that fracture resistance is of greater importance in smaller organisms, and we speculate that one function of heavy elements in structural biological materials is to reduce molecular resonant frequencies and thereby increase absorption of energy from impacts.


Subject(s)
Brachyura/chemistry , Brachyura/physiology , Bromine/chemistry , Hardness , Hoof and Claw/physiology , Animals , Bromine/metabolism , Elastic Modulus , Hoof and Claw/chemistry , Tensile Strength , X-Ray Diffraction
7.
J Am Chem Soc ; 122(14): 3399-3412, 2000 Apr 12.
Article in English | MEDLINE | ID: mdl-25152534

ABSTRACT

The oxygen-evolving complex of Photosystem II in plants and cyanobacteria catalyzes the oxidation of two water molecules to one molecule of dioxygen. A tetranuclear Mn complex is believed to cycle through five intermediate states (S0-S4) to couple the four-electron oxidation of water with the one-electron photochemistry occurring at the Photosystem II reaction center. We have used X-ray absorption spectroscopy to study the local structure of the Mn complex and have proposed a model for it, based on studies of the Mn K-edges and the extended X-ray absorption fine structure of the S1 and S2 states. The proposed model consists of two di-µ-oxo-bridged binuclear Mn units with Mn-Mn distances of ~2.7 Å that are linked to each other by a mono-µ-oxo bridge with a Mn-Mn separation of ~3.3 Å. The Mn-Mn distances are invariant in the native S1 and S2 states. This report describes the application of X-ray absorption spectroscopy to S3 samples created under physiological conditions with saturating flash illumination. Significant changes are observed in the Mn-Mn distances in the S3 state compared to the S1 and the S2 states. The two 2.7 Å Mn-Mn distances that characterize the di-µ-oxo centers in the S1 and S2 states are lengthened to ~2.8 and 3.0 Å in the S3 state, respectively. The 3.3 Å Mn-Mn and Mn-Ca distances also increase by 0.04-0.2 Å. These changes in Mn-Mn distances are interpreted as consequences of the onset of substrate/water oxidation in the S3 state. Mn-centered oxidation is evident during the S0→S1 and S1→S2 transitions. We propose that the changes in Mn-Mn distances during the S2→S3 transition are the result of ligand or water oxidation, leading to the formation of an oxyl radical intermediate formed at a bridging or terminal position. The reaction of the oxyl radical with OH-, H2O, or an oxo group during the subsequent S state conversion is proposed to lead to the formation of the O-O bond. Models that can account for changes in the Mn-Mn distances in the S3 state and the implications for the mechanism of water oxidation are discussed.

8.
Science ; 340(6131): 491-5, 2013 Apr 26.
Article in English | MEDLINE | ID: mdl-23413188

ABSTRACT

Intense femtosecond x-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous x-ray diffraction (XRD) and x-ray emission spectroscopy (XES) of microcrystals of photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD-XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation-sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies.


Subject(s)
Manganese Compounds/chemistry , Oxides/chemistry , Photosystem II Protein Complex/chemistry , Crystallography, X-Ray/methods , Cyanobacteria/enzymology , Electrons , Light , Oxidation-Reduction , Photosystem II Protein Complex/radiation effects , Protein Conformation , Spectrometry, X-Ray Emission/methods , Temperature , Water/chemistry , X-Ray Diffraction/methods
9.
Acta Crystallogr D Biol Crystallogr ; 63(Pt 9): 951-60, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17704563

ABSTRACT

X-ray damage to protein crystals is often assessed on the basis of the degradation of diffraction intensity, yet this measure is not sensitive to the rapid changes that occur at photosensitive groups such as the active sites of metalloproteins. Here, X-ray absorption spectroscopy is used to study the X-ray dose-dependent photoreduction of crystals of the [Fe(2)S(2)]-containing metalloprotein putidaredoxin. A dramatic decrease in the rate of photoreduction is observed in crystals cryocooled with liquid helium at 40 K compared with those cooled with liquid nitrogen at 110 K. Whereas structural changes consistent with cluster reduction occur in the active site of the crystal measured at 110 K, no such changes occur in the crystal measured at 40 K, even after an eightfold increase in dose. When the structural results from extended X-ray absorption fine-structure measurements are compared with those obtained by crystallography on this and similar proteins, it is apparent that X-ray-induced photoreduction has had an impact on the crystallographic data and subsequent structure solutions. These results strongly indicate the importance of using liquid-helium-based cooling for metalloprotein crystallography in order to avoid the subtle yet important changes that can take place at the metalloprotein active sites when liquid-nitrogen-based cooling is used. The study also illustrates the need for direct measurement of the redox states of the metals, through X-ray absorption spectroscopy, simultaneously with the crystallographic measurements.


Subject(s)
Ferredoxins/chemistry , Metalloproteins/chemistry , Proteins/chemistry , Binding Sites , Crystallography, X-Ray , Helium , Oxidation-Reduction , Photochemistry , X-Rays/adverse effects
10.
Science ; 314(5800): 821-5, 2006 Nov 03.
Article in English | MEDLINE | ID: mdl-17082458

ABSTRACT

The oxidation of water to dioxygen is catalyzed within photosystem II (PSII) by a Mn(4)Ca cluster, the structure of which remains elusive. Polarized extended x-ray absorption fine structure (EXAFS) measurements on PSII single crystals constrain the Mn(4)Ca cluster geometry to a set of three similar high-resolution structures. Combining polarized EXAFS and x-ray diffraction data, the cluster was placed within PSII, taking into account the overall trend of the electron density of the metal site and the putative ligands. The structure of the cluster from the present study is unlike either the 3.0 or 3.5 angstrom-resolution x-ray structures or other previously proposed models.


Subject(s)
Calcium/chemistry , Cyanobacteria/chemistry , Manganese/chemistry , Oxygen/chemistry , Photosystem II Protein Complex/chemistry , Water/chemistry , Binding Sites , Crystallization , Crystallography, X-Ray , Cyanobacteria/metabolism , Fourier Analysis , Ligands , Models, Molecular , Oxidation-Reduction , Oxygen/metabolism , Photosystem II Protein Complex/metabolism , Spectrum Analysis , Water/metabolism , X-Ray Diffraction , X-Rays
11.
J Synchrotron Radiat ; 12(Pt 1): 23-7, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15616361

ABSTRACT

Single-crystal X-ray absorption spectroscopy (XAS) instrumentation, allowing sequential integrated XAS and crystallographic data acquisition during the same experiment and on the same beamline, has been developed for SSRL beamline 9-3, a wiggler side station dedicated to general user biological XAS. The implementation includes a Huber kappa goniometer, Canberra 30-element Ge detector for XAS data collection, open-flow LHe and LN2 crystal coolers, a microscope for crystal alignment in the beam, and a MarCCD crystallography detector. The kappa goniometer allows a large accessible angular range with an open geometry, affording access to detectors and open stream coolers, as well as future instrumentation. Applicable standard hardware on SSRL crystallography beamlines has been incorporated, with crystallographic data collection controlled via the Blu-Ice software developed by the SSRL SMB macromolecular crystallography group. XAS data collection is handled through the SSRL standard XAS-Collect software. Initial diffraction and XAS data from single crystals using an open-flow cryostat are presented. The instrument will be available to general users after the SPEAR3 upgrade in 2004, and future expansion for use in high-throughput structural genomics XAS is proposed.


Subject(s)
Crystallography, X-Ray/instrumentation , Macromolecular Substances , Spectrum Analysis/instrumentation , Software , X-Rays
12.
J Synchrotron Radiat ; 12(Pt 1): 28-34, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15616362

ABSTRACT

The utility of using X-ray absorption spectroscopy (XAS) to study metalloproteins and, specifically, the enzyme complex nitrogenase, is highlighted by this study comparing both the structural and Mo-localized electronic features of the iron-molybdenum cofactor (FeMoco) in isolated MoFe protein and in the ADP.AlF4--stabilized complex of the MoFe protein with the Fe protein. No major differences are found at Mo between the two protein forms. The excellent quality of the data at both the Mo K and L edges will provide a baseline for analysis of other intermediates in the nitrogenase cycle. A new capability to delineate various contributions in the resting state of FeMoco is being pursued through polarized single-crystal XAS. The initial results point to the feasibility of using this technique for the analysis of scattering from the as yet unidentified atom at the center of FeMoco.


Subject(s)
Adenosine Diphosphate/chemistry , Aluminum Compounds/chemistry , Bacterial Proteins/chemistry , Molybdoferredoxin/chemistry , Nitrogenase/chemistry , Spectrum Analysis/methods , Azotobacter vinelandii/enzymology , Bacterial Proteins/metabolism , Molybdoferredoxin/metabolism , Multienzyme Complexes/chemistry , Nitrogenase/metabolism , Protein Conformation , X-Rays
13.
Proc Natl Acad Sci U S A ; 102(34): 12047-52, 2005 Aug 23.
Article in English | MEDLINE | ID: mdl-16103362

ABSTRACT

X-ray absorption spectroscopy was used to measure the damage caused by exposure to x-rays to the Mn(4)Ca active site in single crystals of photosystem II as a function of dose and energy of x-rays, temperature, and time. These studies reveal that the conditions used for structure determination by x-ray crystallography cause serious damage specifically to the metal-site structure. The x-ray absorption spectra show that the structure changes from one that is characteristic of a high-valent Mn(4)(III(2),IV(2)) oxo-bridged Mn(4)Ca cluster to that of Mn(II) in aqueous solution. This damage to the metal site occurs at a dose that is more than one order of magnitude lower than the dose that results in loss of diffractivity and is commonly considered safe for protein crystallography. These results establish quantitative x-ray dose parameters that are applicable to redox-active metalloproteins. This case study shows that a careful evaluation of the structural intactness of the active site(s) by spectroscopic techniques can validate structures derived from crystallography and that it can be a valuable complementary method before structure-function correlations of metalloproteins can be made on the basis of high-resolution x-ray crystal structures.


Subject(s)
Calcium/chemistry , Cyanobacteria/chemistry , Manganese Compounds/chemistry , Manganese Compounds/radiation effects , Metalloproteins/chemistry , Photosystem II Protein Complex/chemistry , Crystallography , Dose-Response Relationship, Radiation , Spectrum Analysis , Temperature , Time Factors
14.
Rev Sci Instrum ; 75(6): 2056-2060, 2004.
Article in English | MEDLINE | ID: mdl-25057214

ABSTRACT

X-ray absorption spectroscop (XAS) in the intermediate x-ray region (2-6 keV) for dilute biological samples has been limited because of detector/flux limitations and inadequate cryogenic instrumentation. We have designed and constructed a new tailpiece/sample chamber for a commercially available liquid helium cooled cryostat which overcomes difficulties related to low fluorescence signals by using thin window materials and incorporating an internal photodiode detector. With the apparatus, XAS data at the Cl, S, and Ca K edges have been collected on frozen solutions and biological samples at temperatures down to 60 K. A separate chamber has been incorporated for collecting room-temperature spectra of standard compounds (for energy calibration purposes) which prevents contamination of the cryostat chamber and allows the sample to remain undisturbed, both important concerns for studying dilute and radiation-sensitive samples.

15.
J Phys Chem B ; 102: 8257-8265, 1998.
Article in English | MEDLINE | ID: mdl-25152697

ABSTRACT

The structural consequences of calcium depletion of Photosystem II (PS II) by treatment at pH 3.0 in the presence of citrate has been determined by Mn K-edge X-ray absorption spectroscopy. X-ray absorption edge spectroscopy of Ca-depleted samples in the S1', S2', and S3' oxidation states reveals that there is Mn oxidation on the S1'-S2' transition, although no evidence of Mn oxidation was found for the S2'-S3' transition. This result is in keeping with the results from EPR studies where it has been found that the species oxidized to give the S3' broad radical signal found in Ca-depleted PS II is tyrosine Yz. The S2' state can be prepared by two methods: illumination followed by dark adaptation and illumination in the presence of DCMU to limit to one turnover. Illumination followed by dark adaptation was found to yield a lower Mn K-edge inflection-point energy than illumination with DCMU, indicating vulnerability to reduction of the Mn complex, even over the relatively short times used for dark adaptation (~15 min). EXAFS measurements of Ca-depleted samples in the three modified S states (referred to here as S' states) reveals that the Fourier peak due to scatterers at ~3.3 Å from Mn is strongly diminished, consistent with our previous assignment of a Ca-scattering contribution at this distance. Even after Ca depletion, there is still significant amplitude in the third peak, further supporting our conclusions from earlier studies that the third peak in native samples is comprised of both Mn and Ca scattering. The Mn-Mn contributions making up the second Fourier peak at ~2.7 Å are largely undisturbed by Ca-depletion, but there is some evidence that S1'-state samples contain significant amounts of reduced Mn(II), which is then photooxidized in the preparation of higher S' states.

SELECTION OF CITATIONS
SEARCH DETAIL