Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Mar Drugs ; 21(5)2023 May 17.
Article in English | MEDLINE | ID: mdl-37233497

ABSTRACT

Pre-metabolic syndrome (pre-MetS) may represent the best transition phase to start treatments aimed at reducing cardiometabolic risk factors of MetS. In this study, we investigated the effects of the marine microalga Tisochrysis lutea F&M-M36 (T. lutea) on cardiometabolic components of pre-MetS and its underlying mechanisms. Rats were fed a standard (5% fat) or a high-fat diet (20% fat) supplemented or not with 5% of T. lutea or fenofibrate (100 mg/Kg) for 3 months. Like fenofibrate, T. lutea decreased blood triglycerides (p < 0.01) and glucose levels (p < 0.01), increased fecal lipid excretion (p < 0.05) and adiponectin (p < 0.001) without affecting weight gain. Unlike fenofibrate, T. lutea did not increase liver weight and steatosis, reduced renal fat (p < 0.05), diastolic (p < 0.05) and mean arterial pressure (p < 0.05). In visceral adipose tissue (VAT), T. lutea, but not fenofibrate, increased the ß3-adrenergic receptor (ß3ADR) (p < 0.05) and Uncoupling protein 1 (UCP-1) (p < 0.001) while both induced glucagon-like peptide-1 receptor (GLP1R) protein expression (p < 0.001) and decreased interleukin (IL)-6 and IL-1ß gene expression (p < 0.05). Pathway analysis on VAT whole-gene expression profiles showed that T. lutea up-regulated energy-metabolism-related genes and down-regulated inflammatory and autophagy pathways. The multitarget activity of T. lutea suggests that this microalga could be useful in mitigating risk factors of MetS.


Subject(s)
Intra-Abdominal Fat , Metabolic Syndrome , Rats , Animals , Intra-Abdominal Fat/metabolism , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Signal Transduction , Diet, High-Fat/adverse effects , Risk Factors , Receptors, Adrenergic/metabolism , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
2.
Int J Mol Sci ; 24(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37047724

ABSTRACT

The analysis of histological alterations in all types of tissue is of primary importance in pathology for highly accurate and robust diagnosis. Recent advances in tissue clearing and fluorescence microscopy made the study of the anatomy of biological tissue possible in three dimensions. The combination of these techniques with classical hematoxylin and eosin (H&E) staining has led to the birth of three-dimensional (3D) histology. Here, we present an overview of the state-of-the-art methods, highlighting the optimal combinations of different clearing methods and advanced fluorescence microscopy techniques for the investigation of all types of biological tissues. We employed fluorescence nuclear and eosin Y staining that enabled us to obtain hematoxylin and eosin pseudo-coloring comparable with the gold standard H&E analysis. The computational reconstructions obtained with 3D optical imaging can be analyzed by a pathologist without any specific training in volumetric microscopy, paving the way for new biomedical applications in clinical pathology.


Subject(s)
Imaging, Three-Dimensional , Hematoxylin , Eosine Yellowish-(YS) , Microscopy, Fluorescence/methods , Staining and Labeling , Imaging, Three-Dimensional/methods , Microscopy, Confocal
3.
Int J Mol Sci ; 23(12)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35743194

ABSTRACT

Correct thyroid function is regarded essential for maintaining the growth, differentiation and survival of most mammalian cells at homeostatic conditions [...].


Subject(s)
Mammals , Thyroid Gland , Animals , Cell Differentiation , Homeostasis/physiology
4.
Int J Mol Sci ; 23(5)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35269859

ABSTRACT

3-iodothyronamine (T1AM) and 3-iodothyroacetic acid (TA1) are thyroid-hormone-related compounds endowed with pharmacological activity through mechanisms that remain elusive. Some evidence suggests that they may have redox features. We assessed the chemical activity of T1AM and TA1 at pro-oxidant conditions. Further, in the cell model consisting of brown adipocytes (BAs) differentiated for 6 days in the absence (M cells) or in the presence of 20 nM T1AM (M + T1AM cells), characterized by pro-oxidant metabolism, or TA1 (M + TA1 cells), we investigated the expression/activity levels of pro- and anti-oxidant proteins, including UCP-1, sirtuin-1 (SIRT1), mitochondrial monoamine (MAO-A and MAO-B), semicarbazide-sensitive amine oxidase (SSAO), and reactive oxygen species (ROS)-dependent lipoperoxidation. T1AM and TA1 showed in-vitro antioxidant and superoxide scavenging properties, while only TA1 acted as a hydroxyl radical scavenger. M + T1AM cells showed higher lipoperoxidation levels and reduced SIRT1 expression and activity, similar MAO-A, but higher MAO-B activity in terms of M cells. Instead, the M + TA1 cells exhibited increased levels of SIRT1 protein and activity and significantly lower UCP-1, MAO-A, MAO-B, and SSAO in comparison with the M cells, and did not show signs of lipoperoxidation. Our results suggest that SIRT1 is the mediator of T1AM and TA1 pro-or anti-oxidant effects as a result of ROS intracellular levels, including the hydroxyl radical. Here, we provide evidence indicating that T1AM and TA1 administration impacts on the redox status of a biological system, a feature that indicates the novel mechanism of action of these two thyroid-hormone-related compounds.


Subject(s)
Hydroxyl Radical , Sirtuin 1 , Monoamine Oxidase/metabolism , Oxidation-Reduction , Reactive Oxygen Species , Sirtuin 1/metabolism , Thyroid Hormones/metabolism , Thyronines/metabolism , Thyronines/pharmacology
5.
Int J Mol Sci ; 20(19)2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31623362

ABSTRACT

Skeletal muscle regeneration is ensured by satellite cells (SC), which upon activation undergo self-renewal and myogenesis. The correct sequence of healing events may be offset by inflammatory and/or fibrotic factors able to promote fibrosis and consequent muscle wasting. Angiotensin-II (Ang) is an effector peptide of the renin angiotensin system (RAS), of which the direct role in human SCs (hSCs) is still controversial. Based on the hypertrophic and fibrogenic effects of Ang via transient receptor potential canonical (TRPC) channels in cardiac and renal tissues, we hypothesized a similar axis in hSCs. Toward this aim, we demonstrated that hSCs respond to acute Ang stimulation, dose-dependently enhancing p-mTOR, p-AKT, p-ERK1/2 and p-P38. Additionally, sub-acute Ang conditioning increased cell size and promoted trans-differentiation into myofibroblasts. To provide a mechanistic hypothesis on TRPC channel involvement in the processes, we proved that TRPC channels mediate a basal calcium entry into hSCs that is stimulated by acute Ang and strongly amplified by sub-chronic Ang conditioning. Altogether, these findings demonstrate that Ang induces a fate shift of hSCs into myofibroblasts and provide a basis to support a benefit of RAS and TRPC channel blockade to oppose muscle fibrosis.


Subject(s)
Angiotensin II/metabolism , Cell Transdifferentiation , Myofibroblasts/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Signal Transduction , Angiotensin II/pharmacology , Calcium Signaling , Cell Survival/drug effects , Cell Transdifferentiation/drug effects , Humans , Hypertrophy , Molecular Imaging , Myoblasts/cytology , Myoblasts/metabolism , Myofibroblasts/cytology , Renin-Angiotensin System/drug effects , Satellite Cells, Skeletal Muscle/drug effects , Signal Transduction/drug effects
6.
Horm Behav ; 94: 93-96, 2017 08.
Article in English | MEDLINE | ID: mdl-28711308

ABSTRACT

We previously demonstrated that 3-iodothyronamine (T1AM), a by-product of thyroid hormone metabolism, pharmacologically administered to mice acutely stimulated learning and memory acquisition and provided hyperalgesia with a mechanism which remains to be defined. We now aimed to investigate whether the T1AM effect on memory and pain was maintained in mice pre-treated with scopolamine, a non-selective muscarinic antagonist expected to induce amnesia and, possibly, hyperalgesia. Mice were pre-treated with scopolamine and, after 20min, injected intracerebroventricularly (i.c.v.) with T1AM (0.13, 0.4, 1.32µg/kg). 15min after T1AM injection, the mice learning capacity or their pain threshold were evaluated by the light/dark box and by the hot plate test (51.5°C) respectively. Experiments in the light/dark box were repeated in mice receiving clorgyline (2.5mg/kg, i.p.), a monoamine oxidase (MAO) inhibitor administered 10min before scopolamine (0.3mg/kg). Our results demonstrated that 0.3mg/kg scopolamine induced amnesia without modifying the murine pain threshold. T1AM fully reversed scopolamine-induced amnesia and produced hyperalgesia at a dose as low as 0.13µg/kg. The T1AM anti-amnestic effect was lost in mice pre-treated with clorgyline. We report that the removal of muscarinic signalling increases T1AM pro learning and hyperalgesic effectiveness suggesting T1AM as a potential treatment as a "pro-drug" for memory dysfunction in neurodegenerative diseases.


Subject(s)
Memory/drug effects , Pain/chemically induced , Scopolamine/adverse effects , Thyronines/pharmacology , Amnesia/chemically induced , Amnesia/prevention & control , Animals , Hyperalgesia/chemically induced , Hyperalgesia/prevention & control , Learning/drug effects , Male , Mice , Monoamine Oxidase Inhibitors/pharmacology , Pain/prevention & control , Pain Threshold/drug effects , Prodrugs/administration & dosage , Prodrugs/pharmacology , Scopolamine/administration & dosage , Thyronines/administration & dosage , Time Factors
7.
Clin Cases Miner Bone Metab ; 12(2): 135-8, 2015.
Article in English | MEDLINE | ID: mdl-26604938

ABSTRACT

Sarcopenia represents a major health problem highly prevalent in elderly and age-related chronic diseases. Current pharmacological strategies available to prevent and reverse sarcopenia are largely unsatisfactory thus raising the need to identify novel targets for pharmacological intervention and possibly more effective and safe drugs. This review highlights the current knowledge of the potential benefits of renin-angiotensin system blockade in sarcopenia and discuss the main mechanisms underlying the effects.

8.
Prog Biophys Mol Biol ; 168: 3-9, 2022 01.
Article in English | MEDLINE | ID: mdl-34536443

ABSTRACT

Cover-all mapping of the distribution of neurons in the human brain would have a significant impact on the deep understanding of brain function. Therefore, complete knowledge of the structural organization of different human brain regions at the cellular level would allow understanding their role in the functions of specific neural networks. Recent advances in tissue clearing techniques have allowed important advances towards this goal. These methods use specific chemicals capable of dissolving lipids, making the tissue completely transparent by homogenizing the refractive index. However, labeling and clearing human brain samples is still challenging. Here, we present an approach to perform the cellular mapping of the human cerebral cortex coupling immunostaining with SWITCH/TDE clearing and confocal microscopy. A specific evaluation of the contributions of the autofluorescence signals generated from the tissue fixation is provided as well as an assessment of lipofuscin pigments interference. Our evaluation demonstrates the possibility of obtaining an efficient clearing and labeling process of parts of adult human brain slices, making it an excellent method for morphological classification and antibody validation of neuronal and non-neuronal markers.


Subject(s)
Brain , Neurons , Cerebral Cortex , Humans , Imaging, Three-Dimensional , Microscopy, Confocal
9.
Commun Biol ; 5(1): 447, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35551498

ABSTRACT

The combination of optical tissue transparency with immunofluorescence allows the molecular characterization of biological tissues in 3D. However, adult human organs are particularly challenging to become transparent because of the autofluorescence contributions of aged tissues. To meet this challenge, we optimized SHORT (SWITCH-H2O2-antigen Retrieval-TDE), a procedure based on standard histological treatments in combination with a refined clearing procedure to clear and label portions of the human brain. 3D histological characterization with multiple molecules is performed on cleared samples with a combination of multi-colors and multi-rounds labeling. By performing fast 3D imaging of the samples with a custom-made inverted light-sheet fluorescence microscope (LSFM), we reveal fine details of intact human brain slabs at subcellular resolution. Overall, we proposed a scalable and versatile technology that in combination with LSFM allows mapping the cellular and molecular architecture of the human brain, paving the way to reconstruct the entire organ.


Subject(s)
Hydrogen Peroxide , Imaging, Three-Dimensional , Adult , Aged , Brain/diagnostic imaging , Fluorescent Antibody Technique , Humans , Imaging, Three-Dimensional/methods , Microscopy, Fluorescence/methods
10.
Eur J Pharmacol ; 912: 174606, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34717926

ABSTRACT

The 3-iodothyronamine (T1AM) and 3-iodothryoacetic acid (TA1), are endogenous occurring compounds structurally related with thyroid hormones (THs, the pro-hormone T4 and the active hormone T3) initially proposed as possible mediators of the rapid effects of T3. However, after years from their identification, the physio-pathological meaning of T1AM and TA1 tissue levels remains an unsolved issue while pharmacological evidence indicates both compounds promote in rodents central and peripheral effects with mechanisms which remain mostly elusive. Pharmacodynamics of T1AM includes the recognition of G-coupled receptors, ion channels but also biotransformation into an active metabolite, i.e. the TA1. Furthermore, long term T1AM treatment associates with post-translational modifications of cell proteins. Such array of signaling may represent an added value, rather than a limit, equipping T1AM to play different functions depending on local expression of targets and enzymes involved in its biotransformation. Up to date, no information regarding TA1 mechanistic is available. We here review some of the main findings describing effects of T1AM (and TA1) which suggest these compounds interplay with the histaminergic system. These data reveal T1AM and TA1 are part of a network of signals involved in neuronal plasticity including neuroprotection and suggest T1AM and TA1 as lead compounds for a novel class of atypical psychoactive drugs.


Subject(s)
Histamine/metabolism , Neuroprotection/drug effects , Neuroprotective Agents/pharmacology , Thyronines/pharmacology , Animals , Humans , Neuroprotective Agents/therapeutic use , Receptors, Histamine/metabolism , Thyronines/therapeutic use
11.
Front Mol Biosci ; 8: 650962, 2021.
Article in English | MEDLINE | ID: mdl-33928123

ABSTRACT

It is known that fructose may contribute to myocardial vulnerability to ischemia/reperfusion (I/R) injury. D-tagatose is a fructose isomer with less caloric value and used as low-calorie sweetener. Here we compared the metabolic impact of fructose or D-tagatose enriched diets on potential exacerbation of myocardial I/R injury. Wistar rats were randomizedly allocated in the experimental groups and fed with one of the following diets: control (CTRL), 30% fructose-enriched (FRU 30%) or 30% D-tagatose-enriched (TAG 30%). After 24 weeks of dietary manipulation, rats underwent myocardial injury caused by 30 min ligature of the left anterior descending (LAD) coronary artery followed by 24 h' reperfusion. Fructose consumption resulted in body weight increase (49%) as well as altered glucose, insulin and lipid profiles. These effects were associated with increased I/R-induced myocardial damage, oxidative stress (36.5%) and inflammation marker expression. TAG 30%-fed rats showed lower oxidative stress (21%) and inflammation in comparison with FRU-fed rats. Besides, TAG diet significantly reduced plasmatic inflammatory cytokines and GDF8 expression (50%), while increased myocardial endothelial nitric oxide synthase (eNOS) expression (59%). Overall, we demonstrated that D-tagatose represents an interesting sugar alternative when compared to its isomer fructose with reduced deleterious impact not only on the metabolic profile but also on the related heart susceptibility to I/R injury.

12.
Biomed Opt Express ; 12(6): 3684-3699, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34221688

ABSTRACT

Although neuronal density analysis on human brain slices is available from stereological studies, data on the spatial distribution of neurons in 3D are still missing. Since the neuronal organization is very inhomogeneous in the cerebral cortex, it is critical to map all neurons in a given volume rather than relying on sparse sampling methods. To achieve this goal, we implement a new tissue transformation protocol to clear and label human brain tissues and we exploit the high-resolution optical sectioning of two-photon fluorescence microscopy to perform 3D mesoscopic reconstruction. We perform neuronal mapping of 100mm3 human brain samples and evaluate the volume and density distribution of neurons from various areas of the cortex originating from different subjects (young, adult, and elderly, both healthy and pathological). The quantitative evaluation of the density in combination with the mean volume of the thousands of neurons identified within the specimens, allow us to determine the layer-specific organization of the cerebral architecture.

13.
Biology (Basel) ; 9(5)2020 May 04.
Article in English | MEDLINE | ID: mdl-32375297

ABSTRACT

We investigated the effect of 3-iodothyronamine (T1AM) on thermogenic substrates in brown adipocytes (BAs). BAs isolated from the stromal fraction of rat brown adipose tissue were exposed to an adipogenic medium containing insulin in the absence (M) or in the presence of 20 nM T1AM (M+T1AM) for 6 days. At the end of the treatment, the expression of p-PKA/PKA, p-AKT/AKT, p-AMPK/AMPK, p-CREB/CREB, p-P38/P38, type 1 and 3 beta adrenergic receptors (ß1-ß3AR), GLUT4, type 2 deiodinase (DIO2), and uncoupling protein 1 (UCP-1) were evaluated. The effects of cell conditioning with T1AM on fatty acid mobilization (basal and adrenergic-mediated), glucose uptake (basal and insulin-mediated), and ATP cell content were also analyzed in both cell populations. When compared to cells not exposed, M+T1AM cells showed increased p-PKA/PKA, p-AKT/AKT, p-CREB/CREB, p-P38/P38, and p-AMPK/AMPK, downregulation of DIO2 and ß1AR, and upregulation of glycosylated ß3AR, GLUT4, and adiponectin. At basal conditions, glycerol release was higher for M+T1AM cells than M cells, without any significant differences in basal glucose uptake. Notably, in M+T1AM cells, adrenergic agonists failed to activate PKA and lipolysis and to increase ATP level, but the glucose uptake in response to insulin exposure was more pronounced than in M cells. In conclusion, our results suggest that BAs conditioning with T1AM promote a catabolic condition promising to fight obesity and insulin resistance.

14.
Front Cell Neurosci ; 13: 79, 2019.
Article in English | MEDLINE | ID: mdl-30983971

ABSTRACT

Mast cells are primary players in immune and inflammatory diseases. In the brain, mast cells are located at the brain side of the blood brain barrier (BBB) exerting a crucial role in protecting the brain from xenobiotic invasion. Furthermore, recent advances in neuroscience indicate mast cells may play an important role in glial cell-neuron communication through the release of mediators, including histamine. Interestingly, brain mast cells contain not only 50% of the brain histamine but also hormones, proteases and lipids or amine mediators; and cell degranulation may be triggered by different stimuli activating membrane bound receptors including the four types of histaminergic receptors. Among hormones, mast cells can store thyroid hormone (T3) and express membrane-bound thyroid stimulating hormone receptors (TSHRs), thus suggesting from one side that thyroid function may affect mast cells function, from the other that mast cell degranulation may impact on thyroid function. In this respect, the research on hormones in mast cells is scarce. Recent pharmacological evidence indicates the existence of a non-genomic portion of the thyroid secretion including thyroid hormone metabolites. Among which the 3,5 diiodothyronine (3,5-T2), 3-iodothyroanamine (T1AM) and 3-iodothyroacetic acid (TA1) are the most studied. All these compounds are endogenously occurring and found to be increased in inflammatory-based diseases involving mast cells. T1AM and TA1 induce, as T3, neuroprotective effects and itch but also hyperalgesia in rodents with a mechanism largely unknown but mediated by the release of histamine. Due to the rapid onset of their effectiveness they may trigger histamine release from a cell where it is "ready-to-be released," i.e., mast cells. Following a very thin path which passes through old experimental and clinical evidence, at the light of novel acquisitions on endogenous T3 metabolites, we aim to stimulate the attention on the possibility that mast cell histamine may be the connector of a novel (neuro) endocrine pathway linking the thyroid with mast cells.

15.
Neurochem Int ; 129: 104460, 2019 10.
Article in English | MEDLINE | ID: mdl-31075293

ABSTRACT

Thyroid hormone and thyroid hormone metabolites, including 3-iodothyronamine (T1AM) and 3-iodothyroacetic acid (TA1), activate AKT signaling in hippocampal neurons affording protection from excitotoxic damage. We aim to explore whether the mechanism of T1AM neuroprotection against kainic acid (KA)-induced excitotoxicity included the activation of the trace amine associated receptor isoform 1 (TAAR1), one of T1AM targets. Rat organotypic hippocampal slices were exposed to vehicle (Veh) or to 5 µM kA for 24 h in the absence or presence of 0.1, 1 and 10 µM T1AM or to 0.1, 1 and 10 µM T1AM and 1 µM N-(3-Ethoxy-phenyl)-4-pyrrolidin-1-yl-3-trifluoromethyl-benzamide (EPPTB), the only available TAAR1 antagonist, or to 1 µM T1AM in the absence or in the presence of 10 µM LY294002, an inhibitor of phosphoinositide 3-kinases (PI3Ks). Cell death was evaluated by measuring propidium iodide (PI) levels of fluorescence 24 h after treatment. In parallel, the expression levels of p-AKT and p-PKA were evaluated by Western blot analysis of slice lysates. The activity of mitochondrial monoamine oxidases (MAO) was assayed fluorimetrically. 24 h exposure of slices to T1AM resulted in the activation of AKT and PKA. KA exposure induced cell death in the CA3 region and significantly reduced p-AKT and p-PKA levels. The presence of 1 and 10 µM T1AM significantly protected neurons from death and conserved both kinase levels with the essential role of AKT in neuroprotection. Furthermore, EPPTB prevented T1AM-induced neuroprotection, activation of PKA and AKT. Of note, in the presence of EPPTB T1AM degradation by MAO was reduced. Our results indicate that the neuroprotection offered by T1AM depends, as for TA1, on AKT activation but do not allow to conclusively indicate TAAR1 as the target implicated.


Subject(s)
Benzamides/pharmacology , Kainic Acid/toxicity , Neurons/drug effects , Pyrrolidines/pharmacology , Signal Transduction/drug effects , Animals , Female , Hippocampus/drug effects , Hippocampus/metabolism , Male , Neurons/metabolism , Neuroprotection/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Rats, Wistar , Receptors, G-Protein-Coupled , Thyronines/pharmacology
16.
Front Cell Neurosci ; 13: 176, 2019.
Article in English | MEDLINE | ID: mdl-31133807

ABSTRACT

3-iodothyroacetic acid (TA1), an end metabolite of thyroid hormone, has been shown to produce behavioral effects in mice that are dependent on brain histamine. We now aim to verify whether pharmacologically administered TA1 has brain bioavailability and is able to induce histamine-dependent antidepressant-like behaviors. TA1 brain, liver and plasma levels were measured by LC/MS-MS in male CD1 mice, sacrificed 15 min after receiving a high TA1 dose (330 µgkg-1). The hypothalamic mTOR/AKT/GSK-ß cascade activation was evaluated in mice treated with 0.4, 1.32, 4 µgkg-1 TA1 by Western-blot. Mast cells were visualized by immuno-histochemistry in brain slices obtained from mice treated with 4 µgkg-1 TA1. Histamine release triggered by TA1 (20-1000 nM) was also evaluated in mouse peritoneal mast cells. After receiving TA1 (1.32, 4 or 11 µgkg-1; i.p.) CD1 male mice were subjected to the forced swim (FST) and the tail suspension tests (TST). Spontaneous locomotor and exploratory activities, motor incoordination, and anxiolytic or anxiogenic effects, were evaluated. Parallel behavioral tests were also carried out in mice that, prior to receiving TA1, were pre-treated with pyrilamine (10 mgkg-1; PYR) or zolantidine (5 mgkg-1; ZOL), histamine type 1 and type 2 receptor antagonists, respectively, or with p-chloro-phenylalanine (100 mgkg-1; PCPA), an inhibitor of serotonin synthesis. TA1 given i.p. to mice rapidly distributes in the brain, activates the hypothalamic mTOR/AKT and GSK-3ß cascade and triggers mast cells degranulation. Furthermore, TA1 induces antidepressant effects and stimulates locomotion with a mechanism that appears to depend on the histaminergic system. TA1 antidepressant effect depends on brain histamine, thus highlighting a relationship between the immune system, brain inflammation and the thyroid.

17.
J Biomed Opt ; 24(10): 1-6, 2019 10.
Article in English | MEDLINE | ID: mdl-31674164

ABSTRACT

Confocal detection in digital scanned laser light-sheet fluorescence microscopy (DSLM) has been established as a gold standard method to improve image quality. The selective line detection of a complementary metal­oxide­semiconductor camera (CMOS) working in rolling shutter mode allows the rejection of out-of-focus and scattered light, thus reducing background signal during image formation. Most modern CMOS have two rolling shutters, but usually only a single illuminating beam is used, halving the maximum obtainable frame rate. We report on the capability to recover the full image acquisition rate via dual confocal DSLM by using an acousto-optic deflector. Such a simple solution enables us to independently generate, control and synchronize two beams with the two rolling slits on the camera. We show that the doubling of the imaging speed does not affect the confocal detection high contrast.


Subject(s)
Image Processing, Computer-Assisted/methods , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Animals , Brain/diagnostic imaging , Equipment Design , High-Throughput Screening Assays/methods , Larva/cytology , Mice , Mice, Inbred C57BL , Microscopy, Confocal/instrumentation , Microscopy, Fluorescence/instrumentation , Zebrafish
18.
Article in English | MEDLINE | ID: mdl-29928258

ABSTRACT

3-Iodothyronamine (T1AM) is the last iodinated thyronamine generated from thyroid hormone alternative metabolism found circulating in rodents and in humans. So far, the physiopathological meaning of T1AM tissue levels is unknown. Much is instead known on T1AM pharmacological effects in rodents. Such evidence indicates that T1AM acutely modifies, with high potency and effectiveness, rodents' metabolism and behavior, often showing inverted U-shaped dose-response curves. Although several possible targets for T1AM were identified, the mechanism underlying T1AM behavioral effects remains still elusive. T1AM pharmacokinetic features clearly indicate the central nervous system is not a preferential site for T1AM distribution but it is a site where T1AM levels are critically regulated, as it occurs for neuromodulators or neurotransmitters. We here summarize and discuss evidence supporting the hypothesis that central effects of T1AM derive from activation of intracellular and possibly extracellular pathways. In this respect, consisting evidence indicates the intracellular pathway is mediated by the product of T1AM phase-I non-microsomal oxidation, the 3-iodothryoacetic acid, while other data indicate a role for the trace amine-associated receptor, isoform 1, as membrane target of T1AM (extracellular pathway). Overall, these evidence might sustain the non-linear dose-effect curves typically observed when increasing T1AM doses are administered and reveal an interesting and yet unexplored link between thyroid, monoamine oxidases activity and histamine.

19.
Thyroid ; 28(10): 1387-1397, 2018 10.
Article in English | MEDLINE | ID: mdl-30129879

ABSTRACT

BACKGROUND: 3-Iodothyroacetic acid (TA1) is among the thyroid hormone (T3) metabolites that can acutely modify behavior in mice. This study aimed to investigate whether TA1 is also able to reduce neuron hyper-excitability and protect from excitotoxic damage. METHODS: CD1 male mice were treated intraperitoneally with saline solution or TA1 (4, 7, 11, or 33 µg/kg) before receiving 90 mg/kg pentylenetrazole subcutaneously. The following parameters were measured: latency to first seizure onset, number of mice experiencing seizures, hippocampal levels of c-fos, and PI3K/AKT activation levels. Organotypic hippocampal slices were exposed to vehicle or to 5 µM kainic acid (KA) in the absence or presence of 0.01-10 µM TA1. In another set of experiments, slices were exposed to vehicle or 5 µM KA in the absence or presence of 10 µM T3, 3,5,3'-triiodothyroacetic acid (TRIAC), T1AM, thyronamine (T0AM), or thyroacetic acid (TA0). Neuronal cell death was measured fluorimetically. The ability of TA1 and T3, TRIAC, T1AM, T0A, and TA0 to activate the PI3K/AKT cascade was evaluated by Western blot. The effect of TA1 on KA-induced currents in CA3 neurons was evaluated by patch clamp recordings on acute hippocampal slices. RESULTS: TA1 (7 and 11 µg/kg) significantly reduced the number of mice showing convulsions and increased their latency of onset, restored pentylenetrazole-induced reduction of hippocampal c-fos levels, activated the PI3K/AKT, and reduced GSK-3ß activity. In rat organotypic hippocampal slices, TA1 reduced KA-induced cell death by activating the PI3K/AKT cascade and increasing GSK-3ß phosphorylation levels. Protection against KA toxicity was also exerted by T3 and other T3 metabolites studied. TA1 did not interact at KA receptors. Both the anticonvulsant and neuroprotective effects of TA1 were abolished by pretreating mice or organotypic hippocampal slices with pyrilamine, an histamine type 1 receptor antagonist (10 mg/kg or 1 µM, respectively). CONCLUSIONS: TA1 exerts anticonvulsant activity and is neuroprotective in vivo and in vitro. These findings extend the current knowledge on the pharmacological profile of TA1 and indicate possible novel clinical use for this T3 metabolite.


Subject(s)
Anticonvulsants/therapeutic use , Hippocampus/drug effects , Neuroprotective Agents/therapeutic use , Seizures/drug therapy , Thyronines/therapeutic use , Animals , Anticonvulsants/pharmacology , Cell Death/drug effects , Hippocampus/metabolism , Male , Mice , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Seizures/metabolism , Signal Transduction/drug effects
20.
Neurochem Int ; 115: 31-36, 2018 05.
Article in English | MEDLINE | ID: mdl-29032008

ABSTRACT

3-iodothyroacetic acid (TA1) is among the by-products of thyroid hormone metabolism suspected to mediate the non-genomic effects of the hormone (T3). We aim to investigate whether TA1 systemically administered to mice stimulated mice wakefulness, an effect already described for T3 and for another T3 metabolite (i.e. 3-iodothryonamine; T1AM), and whether TA1 interacted at GABA-A receptors (GABA-AR). Mice were pre-treated with either saline (vehicle) or TA1 (1.32, 4 and 11 µg/kg) and, after 10 min, they received ethanol (3.5 g/kg, i.p.). In another set of experiments, TA1 was administered 5 min after ethanol. The latency of sleep onset and the time of sleep duration were recorded. Voltage-clamp experiments to evaluate the effect of 1 µM TA1 on bicuculline-sensitive currents in acute rat hippocampal slice neurons and binding experiments evaluating the capacity of 1, 10, 100 µM TA1 to displace [3H]flumazenil from mice brain membranes were also performed. 4 µg/kg TA1 increases the latency of onset and at 1.32 and 4 µg/kg it reduces the duration of ethanol-induced sleep only if administered before ethanol. TA1 does not functionally interact at GABA-AR. Overall these results indicate a further similarity between the pharmacological profile of TA1 and that of T1AM.


Subject(s)
Antithyroid Agents/pharmacology , Hippocampus/drug effects , Receptors, GABA-A/drug effects , Thyronines/pharmacology , Animals , Ethanol/pharmacology , Hippocampus/metabolism , Hypnotics and Sedatives/pharmacology , Male , Mice , Rats, Wistar , Receptors, GABA-A/metabolism , Thyroid Hormones/metabolism , Thyronines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL