Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cancer Immunol Immunother ; 61(1): 19-29, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21822917

ABSTRACT

MVA-BN®-HER2 is a new candidate immunotherapy designed for the treatment of HER-2-positive breast cancer. Here, we demonstrate that a single treatment with MVA-BN®-HER2 exerts potent anti-tumor efficacy in a murine model of experimental pulmonary metastasis. This anti-tumor efficacy occurred despite a strong tumor-mediated immunosuppressive environment characterized by a high frequency of regulatory T cells (T(reg)) in the lungs of tumor-bearing mice. Immunogenicity studies showed that treatment with MVA-BN®-HER2 induced strongly Th1-dominated HER-2-specific antibody and T-cell responses. MVA-BN®-HER2-induced anti-tumor activity was characterized by an increased infiltration of lungs with highly activated, HER-2-specific, CD8+CD11c+ T cells accompanied by a decrease in the frequency of T(reg) cells in the lung, resulting in a significantly increased ratio of effector T cells to T(reg) cells. In contrast, administration of HER2 protein formulated in Complete Freund's Adjuvant (CFA) induced a strongly Th2-biased immune response to HER-2. However, this did not lead to significant infiltration of the tumor-bearing lungs by CD8+ T cells or the decrease in the frequency of T(reg) cells nor did it result in anti-tumor efficacy. In vivo depletion of CD8+ cells confirmed that CD8 T cells were required for the anti-tumor activity of MVA-BN®-HER2. Furthermore, depletion of CD4+ or CD25+ cells demonstrated that tumor-induced T(reg) cells promoted tumor growth and that CD4 effector cells also contribute to MVA-BN®-HER2-mediated anti-tumor efficacy. Taken together, our data demonstrate that treatment with MVA-BN®-HER2 controls tumor growth through mechanisms including the induction of Th1-biased HER-2-specific immune responses and the control of tumor-mediated immunosuppression.


Subject(s)
Adenocarcinoma/therapy , B-Lymphocyte Subsets/immunology , Cancer Vaccines/pharmacology , Colonic Neoplasms/therapy , Immunotherapy/methods , Receptor, ErbB-2/immunology , T-Lymphocytes, Regulatory/immunology , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Animals , B-Lymphocyte Subsets/enzymology , B-Lymphocyte Subsets/pathology , Cancer Vaccines/immunology , Cell Line, Tumor , Colonic Neoplasms/enzymology , Colonic Neoplasms/pathology , Disease Models, Animal , Female , Humans , Immunophenotyping , Lung Neoplasms/immunology , Lung Neoplasms/secondary , Lung Neoplasms/therapy , Lymphocyte Activation/immunology , Mice , Mice, Inbred BALB C , T-Lymphocytes, Regulatory/enzymology , T-Lymphocytes, Regulatory/pathology
2.
Hum Immunol ; 64(2): 238-44, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12559626

ABSTRACT

From the recombinant human leukocyte antigen (HLA)-DR1/H2-E(k) major histocompatibility complex (MHC) class II-transgenic mice, we have generated two CD4(+) T-cell hybridomas specific for peptides which were derived from human prostatic acid phosphatase (PAP) complexed to the human class II molecule HLA-DR1. Both hybridomas strongly react to PAP-pulsed antigen-presenting cells (APC) from transgenic mice. Interestingly, these hybridomas also responded to PAP antigen presented by HLA-DR1-positive human APC. The species-mismatched T-cell stimulation occurs despite the biologic discordance in participating accessory molecules, which are required for the optimal T-cell-APC interaction. Our results demonstrate various degrees of functional interaction between coreceptors, costimulatory molecules, and integrins, which are expressed on the surface of T-cell hybridomas and heterologous APC.


Subject(s)
Antigen Presentation , Antigen-Presenting Cells/immunology , Antigens, Heterophile/immunology , CD4-Positive T-Lymphocytes/immunology , H-2 Antigens/immunology , HLA-DR1 Antigen/immunology , Hybridomas/immunology , Acid Phosphatase , Animals , CD4-Positive T-Lymphocytes/metabolism , Cell Line/immunology , Epitopes, T-Lymphocyte/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , H-2 Antigens/genetics , HLA-DR1 Antigen/genetics , Humans , Interleukin-2/metabolism , Mice , Mice, Transgenic , Protein Tyrosine Phosphatases/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Proteins/immunology , Species Specificity
3.
Immunobiology ; 209(7): 535-44, 2004.
Article in English | MEDLINE | ID: mdl-15568617

ABSTRACT

The translation machinery of a eukaryotic cell produces errors in decoding mRNA that may give rise to alternative reading frame (Arf) polypeptides. We predicted these putative aberrant translation products from the cDNA of three tumor-associated antigens (Ag): a transmembrane glycoprotein of the class I receptor tyrosine kinase erbB family HER-2, telomerase reverse transcriptase (TERT) and prostatic acid phosphatase (PAP). Immunization of mice with Arf peptide-pulsed antigen presenting cells (APC) generated potent in vivo immune protection against tumors expressing respective tumor-associated Ag. CD8+ T cells from mice immunized with HER-2 derived protective Arf peptides specifically recognized HER-2 transfected tumor cells. The strategy described here has potential for designing highly efficient novel vaccines for Ag-specific immunotherapy of human malignancies.


Subject(s)
Antigens/therapeutic use , Immunotherapy , Neoplasms/therapy , Peptide Fragments/therapeutic use , Animals , Antigens/genetics , Antigens/immunology , DNA-Binding Proteins , Female , Male , Mice , Mice, Inbred C57BL , Neoplasms/immunology , Pancreatitis-Associated Proteins , Peptide Fragments/genetics , Peptide Fragments/immunology , Proteins/genetics , Proteins/immunology , Proteins/therapeutic use , Reading Frames , Receptor, ErbB-2/genetics , Receptor, ErbB-2/immunology , Receptor, ErbB-2/therapeutic use , Telomerase/genetics , Telomerase/immunology , Telomerase/therapeutic use , Tumor Cells, Cultured
4.
Cancer Res ; 71(15): 5235-44, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21670078

ABSTRACT

MVA-BN-PRO (BN ImmunoTherapeutics) is a candidate immunotherapy product for the treatment of prostate cancer. It encodes 2 tumor-associated antigens, prostate-specific antigen (PSA), and prostatic acid phosphatase (PAP), and is derived from the highly attenuated modified vaccinia Ankara (MVA) virus stock known as MVA-BN. Past work has shown that the immunogenicity of antigens can be improved by targeting their localization to exosomes, which are small, 50- to 100-nm diameter vesicles secreted by most cell types. Exosome targeting is achieved by fusing the antigen to the C1C2 domain of the lactadherin protein. To test whether exosome targeting would improve the immunogenicity of PSA and PAP, 2 additional versions of MVA-BN-PRO were produced, targeting either PSA (MVA-BN-PSA-C1C2) or PAP (MVA-BN-PAP-C1C2) to exosomes, while leaving the second transgene untargeted. Treatment of mice with MVA-BN-PAP-C1C2 led to a striking increase in the immune response against PAP. Anti-PAP antibody titers developed more rapidly and reached levels that were 10- to 100-fold higher than those for mice treated with MVA-BN-PRO. Furthermore, treatment with MVA-BN-PAP-C1C2 increased the frequency of PAP-specific T cells 5-fold compared with mice treated with MVA-BN-PRO. These improvements translated into a greater frequency of tumor rejection in a PAP-expressing solid tumor model. Likewise, treatment with MVA-BN-PSA-C1C2 increased the antigenicity of PSA compared with treatment with MVA-BN-PRO and resulted in a trend of improved antitumor efficacy in a PSA-expressing tumor model. These experiments confirm that targeting antigen localization to exosomes is a viable approach for improving the therapeutic potential of MVA-BN-PRO in humans.


Subject(s)
Adenocarcinoma/immunology , Antibodies, Neoplasm/biosynthesis , Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , Exosomes/immunology , Immunotherapy, Active/methods , Prostatic Neoplasms/immunology , Protein Tyrosine Phosphatases/immunology , Acid Phosphatase , Adenocarcinoma/pathology , Adenocarcinoma/therapy , Animals , Antigens, Surface/immunology , Cancer Vaccines/administration & dosage , Cancer Vaccines/therapeutic use , Drug Delivery Systems , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Milk Proteins/immunology , Milk Proteins/pharmacokinetics , Prostate-Specific Antigen/administration & dosage , Prostate-Specific Antigen/immunology , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Protein Structure, Tertiary , Th1 Cells/immunology , Vaccines, Attenuated/immunology , Vaccinia virus/immunology , Xenograft Model Antitumor Assays
5.
J Virol Methods ; 169(1): 87-94, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20637240

ABSTRACT

A flow cytometry-based immuno-titration titer assay was established to determine infectious unit (IU) and transducing unit (TU) of modified vaccinia Ankara (MVA) virus vectors. This titration method enumerates infected cells by measuring the expression of viral protein for IU and transgene protein for TU in individual cells after staining with fluorophore-conjugated antibodies. It presents many advantages over standard virus titration approaches, such as TCID(50) or plaque assay, for its convenience, rapidity and accuracy as illustrated by excellent assay linearity and reproducibility. Importantly, the IU and the TCID(50) assays generated similar batch-specific titer values when testing varied MVA-derived virus preparations. Assay development revealed that the post-infection time at which viral protein expression is evaluated, host cell type, and blocking the formation and release of progeny virion with nocodazole, an anti-microtubule agent or rifampin, a specific vaccinia virus assembly inhibitor, are critical parameters for the precision, robustness, and accuracy of IU titer determination. An added advantage of this assay is that it enables the concurrent determination of IU and transducing units (TU) by measuring the expression of a transgene product when testing recombinant viruses. The latter was demonstrated using a MVA vector carrying a human HER-2 gene fragment as model. Hence, this assay is very versatile in that it can be used to determine IU as well as multiple TU titers simultaneously. Furthermore, it can readily be adapted to other poxvirus vectors.


Subject(s)
Flow Cytometry/methods , Genetic Vectors , Vaccinia virus/isolation & purification , Viral Load , Animals , Cell Line , Cricetinae , Fluorescent Antibody Technique , Immunoassay/methods , Mesocricetus , Reproducibility of Results , Staining and Labeling/methods
6.
J Clin Oncol ; 28(7): 1099-105, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20100959

ABSTRACT

PURPOSE: Therapeutic prostate-specific antigen (PSA) -targeted poxviral vaccines for prostate cancer have been well tolerated. PROSTVAC-VF treatment was evaluated for safety and for prolongation of progression-free survival (PFS) and overall survival (OS) in a randomized, controlled, and blinded phase II study. PATIENTS AND METHODS: In total, 125 patients were randomly assigned in a multicenter trial of vaccination series. Eligible patients had minimally symptomatic castration-resistant metastatic prostate cancer (mCRPC). PROSTVAC-VF comprises two recombinant viral vectors, each encoding transgenes for PSA, and three immune costimulatory molecules (B7.1, ICAM-1, and LFA-3). Vaccinia-based vector was used for priming followed by six planned fowlpox-based vector boosts. Patients were allocated (2:1) to PROSTVAC-VF plus granulocyte-macrophage colony-stimulating factor or to control empty vectors plus saline injections. RESULTS: Eighty-two patients received PROSTVAC-VF and 40 received control vectors. Patient characteristics were similar in both groups. The primary end point was PFS, which was similar in the two groups (P = .6). However, at 3 years post study, PROSTVAC-VF patients had a better OS with 25 (30%) of 82 alive versus 7 (17%) of 40 controls, longer median survival by 8.5 months (25.1 v 16.6 months for controls), an estimated hazard ratio of 0.56 (95% CI, 0.37 to 0.85), and stratified log-rank P = .0061. CONCLUSION: PROSTVAC-VF immunotherapy was well tolerated and associated with a 44% reduction in the death rate and an 8.5-month improvement in median OS in men with mCRPC. These provocative data provide preliminary evidence of clinically meaningful benefit but need to be confirmed in a larger phase III study.


Subject(s)
Cancer Vaccines/immunology , Poxviridae/immunology , Prostate-Specific Antigen/immunology , Prostatic Neoplasms/therapy , Aged , Aged, 80 and over , Double-Blind Method , Genetic Vectors/immunology , Humans , Immunization , Male , Middle Aged , Neoplasm Metastasis , Orchiectomy , Prostate-Specific Antigen/antagonists & inhibitors , Prostatic Neoplasms/mortality , Prostatic Neoplasms/pathology , Vaccines, Synthetic/immunology
7.
Int J Cancer ; 102(6): 660-4, 2002 Dec 20.
Article in English | MEDLINE | ID: mdl-12448011

ABSTRACT

Certain types of malignant tumors overexpress HER-2, a transmembrane glycoprotein of the class I receptor tyrosine kinase erbB family. To develop an effective HER-2 vaccine for the selective immunotherapy of these malignancies, we have genetically engineered fusion proteins containing portions of extra- and intracellular HER-2 domains. Activated dendritic cells (DC) cocultured with these novel antigens (Ag) could induce potent responses of Ag-specific T-cell lines in vitro and a protection against HER-2-expressing tumor in vivo. The protective capabilities of HER-2-derived fusion proteins correlated with the efficiency of their presentation to Ag-specific T-cell hybridomas. The most effective Ag contained GM-CSF, the presence of which facilitated their internalization by antigen-presenting cells (APC) in a receptor-mediated manner.


Subject(s)
Cancer Vaccines/immunology , Neoplasms, Experimental/therapy , Peptide Fragments/immunology , Receptor, ErbB-2/immunology , Vaccines, Synthetic/immunology , Amino Acid Sequence , Animals , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Humans , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Ovalbumin/immunology , Protein Engineering , Recombinant Fusion Proteins/immunology , Vaccination
8.
Cell Transplant ; 9(3): 307-317, 2000 May.
Article in English | MEDLINE | ID: mdl-28880658

ABSTRACT

Peripheral blood samples from HIV-seropositive individuals enrolled in a pilot clinical trial investigating the use of allogeneic dendritic cell therapy were evaluated for mixed chimerism. In this study, dendritic cells from HLA-identical, HIV-seronegative siblings were used. Patients received an infusion of dendritic cells pulsed with HIV MN gp160 protein or with peptides from HLA-A2 restricted epitopes of env, gag, and pol proteins every month for 6-9 months. Of the five allogeneic dendritic cell recipients, two showed increases in HIV antigen-specific immune responses. Allele-specific polymorphisms were identified in three sib-pairs that allowed infused donor cells to be detected using sensitive PCR-based molecular methods. Analysis of blood samples from patients showed similar patterns of donor cell persistence after the first infusion, in that cells were detectable for at least 1 week. Also, differences were observed in the kinetics of cell survival between the first and subsequent infusion cycles in all three patients. This suggests variation in HIV-specific immune responses detected among these three patients was not due to differences in persistence of infused donor cells.

SELECTION OF CITATIONS
SEARCH DETAIL