ABSTRACT
Speckle patterns offer valuable insights into the surface characteristics or the characteristics of the light generating the speckle. One possible way to extract this information is via spectral speckle correlation (SSC). The cross-correlation between two speckle fields, generated at different wavelengths, can be used for example to determine the roughness of the illuminated surface. Taking defocused measurements of the surface or measuring on a tilted surface leads to a displacement between the speckle, which in turn affects the cross-correlation and leads to errors in the calculated roughness. In this work we present a model to determine the lateral speckle displacement for a change in wavelength in the case of subjective speckle and defocused, tilted objects. This model is therefore applicable to a wide range of applications and allows to estimate and correct for this speckle displacement. Experimental results show sub-pixel accuracy for object tilts up to ±7° and defocus distances up to ±25 mm.
ABSTRACT
Observational evidence suggests that forests in the Northern Alps are changing at an increasing rate as a consequence of climate change. Yet, it remains unclear whether the acceleration of forest change will continue in the future, or whether downregulating feedbacks will eventually decouple forest dynamics from climate change. Here we studied future forest dynamics at Berchtesgaden National Park, Germany by means of a process-based forest landscape model, simulating an ensemble of 22 climate projections until the end of the 21st century. Our objectives were (i) to assess whether the observed acceleration of forest dynamics will continue in the future, (ii) to analyze how uncertainty in future climate translates to variation in future forest disturbance, structure, and composition, and (iii) to determine the main drivers of future forest dynamics. We found that forest dynamics continue to accelerate in the coming decades, with a trend towards denser, structurally more complex and more species rich forests. However, changes in forest structure leveled off in the second half of the 21st century regardless of climate scenario. In contrast, climate scenarios caused trajectories of tree species change to diverge in the second half of the 21st century, with stabilization under RCP 2.6 and RCP 4.5 scenarios and accelerated loss of conifers under RCP 8.5. Disturbance projections were 3 to 20 times more variable than future climate, whereas projected future forest structure and composition varied considerably less than climate. Indirect effects of climate change via alterations of the disturbance regime had a stronger impact on future forest dynamics than direct effects. Our findings suggest that dampening feedbacks within forest dynamics will decelerate forest change in the second half of the 21st century. However, warming beyond the levels projected under RCP 4.5 might profoundly alter future forest disturbance and composition, challenging conservation efforts and ecosystem service supply.
Subject(s)
Ecosystem , Forests , Climate Change , Forecasting , TreesABSTRACT
In developing countries, orphan legumes stand at the forefront in the struggle against climate change. Their high nutrient value is crucial in malnutrition and chronic diseases prevention. However, as the 'orphan' definition suggests, their seed systems are still underestimated and seed production is scanty. Seed priming is an effective, sustainable strategy to boost seed quality in orphan legumes for which up-to-date guidelines are required to guarantee reliable and reproducible results. How far are we along this path? What do we expect from seed priming? This brings to other relevant questions. What is the socio-economic relevance of orphan legumes in the Mediterranean Basin? How to potentiate a broader cultivation in specific regions? The case study of the BENEFIT-Med (Boosting technologies of orphan legumes towards resilient farming systems) project, developed by multidisciplinary research networks, envisions a roadmap for producing new knowledge and innovative technologies to improve seed productivity through priming, with the long-term objective of promoting sustainability and food security for/in the climate-sensitive regions. This review highlights the existing drawbacks that must be overcome before orphan legumes could reach the state of 'climate-ready crops'. Only by the integration of knowledge in seed biology, technology and agronomy, the barrier existing between research bench and local agricultural fields may be overcome, generating high-impact technical innovations for orphan legumes. We intend to provide a powerful message to encourage future research in line with the United Nations Agenda 2030 for Sustainable Development.
ABSTRACT
Climate change could exacerbate extreme climate events. This study investigated the global and continental representations of fourteen multisectoral climate indices during the historical (1979-2014), near future (2025-2060) and far future (2065-2100) periods under two emission scenarios, in eleven Coupled Model Intercomparison Project (CMIP) General Circulation Models (GCM). We ranked the GCMs based on five metrics centred on their temporal and spatial performances. Most models followed the reference pattern during the historical period. MPI-ESM ranked best in replicating the daily precipitation intensity (DPI) in Africa, while CANESM5 GCM ranked first in heatwave index (HI), maximum consecutive dry days (MCCD). Across the different continents, MPI-LR GCM performed best in replicating the DPI, except in Africa. The model ranks could provide valuable information when selecting appropriate GCM ensembles when focusing on climate extremes. A global evaluation of the multi-index causal effects for the various indices shows that the dry spell total length (DSTL) was the most crucial index modulating the MCCD for all continents. Also, most indices exhibited a positive climate change signal from the historical to the future. Therefore, it is crucial to design appropriate strategies to strengthen resilience to extreme climatic events while mitigating greenhouse gas emissions.
Subject(s)
Climate Change , Greenhouse Gases , Forecasting , AfricaABSTRACT
Increasing frequencies of droughts require proactive preparedness, particularly in semi-arid regions. As forecasting of such hydrometeorological extremes several months ahead allows for necessary climate proofing, we assess the potential economic value of the seasonal forecasting system SEAS5 for decision making in water management. For seven drought-prone regions analyzed in America, Africa, and Asia, the relative frequency of drought months significantly increased from 10 to 30% between 1981 and 2018. We demonstrate that seasonal forecast-based action for droughts achieves potential economic savings up to 70% of those from optimal early action. For very warm months and droughts, savings of at least 20% occur even for forecast horizons of several months. Our in-depth analysis for the Upper-Atbara dam in Sudan reveals avoidable losses of 16 Mio US$ in one example year for early-action based drought reservoir operation. These findings stress the advantage and necessity of considering seasonal forecasts in hydrological decision making.
ABSTRACT
We applied the process-based model, LandscapeDNDC, to estimate feed availability in the Sahelian and Sudanian agro-ecological zones of West Africa as a basis for calculating the regional Livestock Carrying Capacity (LCC). Comparison of the energy supply (S) from feed resources, including natural pasture, browse, and crop residues, with energy demand (D) of the livestock population for the period 1981-2020 allowed us to assess regional surpluses (S > D) or deficits (S < D) in feed availability. We show that in the last 40 years a large-scale shift from surplus to deficit has occurred. While during 1981-1990 only 27% of the area exceeded the LCC, it was 72% for the period 2011-2020. This was caused by a reduction in the total feed supply of ~ 8% and an increase in feed demand of ~ 37% per-decade, driven by climate change and increased livestock population, respectively. Overall, the S/D decreased from ~ 2.6 (surplus) in 1981 to ~ 0.5 (deficit) in 2019, with a north-south gradient of increasing S/D. As climate change continues and feed availability may likely further shrink, pastoralists either need to source external feed or significantly reduce livestock numbers to avoid overgrazing, land degradation, and any further conflicts for resources.