Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Proc Natl Acad Sci U S A ; 115(11): 2800-2805, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29472448

ABSTRACT

Activation-induced cytidine deaminase (AID) inflicts DNA damage at Ig genes to initiate class switch recombination (CSR) and chromosomal translocations. However, the DNA lesions formed during these processes retain an element of randomness, and thus knowledge of the relationship between specific DNA lesions and AID-mediated processes remains incomplete. To identify necessary and sufficient DNA lesions in CSR, the Cas9 endonuclease and nickase variants were used to program DNA lesions at a greater degree of predictability than is achievable with conventional induction of CSR. Here we show that Cas9-mediated nicks separated by up to 250 nucleotides on opposite strands can mediate CSR. Staggered double-stranded breaks (DSBs) result in more end resection and junctional microhomology than blunt DSBs. Moreover, Myc-Igh chromosomal translocations, which are carried out primarily by alternative end joining (A-EJ), were preferentially induced by 5' DSBs. These data indicate that DSBs with 5' overhangs skew intrachromosomal and interchromosomal end-joining toward A-EJ. In addition to lending potential insight to AID-mediated phenomena, this work has broader carryover implications in DNA repair and lymphomagenesis.


Subject(s)
Chromosomes, Mammalian/genetics , DNA Breaks, Double-Stranded , DNA End-Joining Repair , Recombination, Genetic , Animals , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Cytidine Deaminase/metabolism , Mice , Translocation, Genetic
2.
Cancer Immunol Immunother ; 68(5): 773-785, 2019 May.
Article in English | MEDLINE | ID: mdl-30747243

ABSTRACT

Adoptive cell therapy using autologous tumor-infiltrating lymphocytes (TIL) has shown significant clinical benefit, but is limited by toxicities due to a requirement for post-infusion interleukin-2 (IL-2), for which high dose is standard. To assess a modified TIL protocol using lower dose IL-2, we performed a single institution phase II protocol in unresectable, metastatic melanoma. The primary endpoint was response rate. Secondary endpoints were safety and assessment of immune correlates following TIL infusion. Twelve metastatic melanoma patients were treated with non-myeloablative lymphodepleting chemotherapy, TIL, and low-dose subcutaneous IL-2 (125,000 IU/kg/day, maximum 9-10 doses over 2 weeks). All but one patient had previously progressed after treatment with immune checkpoint inhibitors. No unexpected adverse events were observed, and patients received an average of 6.8 doses of IL-2. By RECIST v1.1, two patients experienced a partial response, one patient had an unconfirmed partial response, and six had stable disease. Biomarker assessment confirmed an increase in IL-15 levels following lymphodepleting chemotherapy as expected and a lack of peripheral regulatory T-cell expansion following protocol treatment. Interrogation of the TIL infusion product and monitoring of the peripheral blood following infusion suggested engraftment of TIL. In one responding patient, a population of T cells expressing a T-cell receptor Vß chain that was dominant in the infusion product was present at a high percentage in peripheral blood more than 2 years after TIL infusion. This study shows that this protocol of low-dose IL-2 following adoptive cell transfer of TIL is feasible and clinically active. (ClinicalTrials.gov identifier NCT01883323.).


Subject(s)
Immunotherapy, Adoptive/methods , Interleukin-2/therapeutic use , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/therapy , Skin Neoplasms/therapy , Adult , Cell Proliferation , Cells, Cultured , Female , Humans , Interleukin-15/metabolism , Lymphocytes, Tumor-Infiltrating/transplantation , Male , Melanoma/immunology , Middle Aged , Neoplasm Metastasis , Skin Neoplasms/immunology , Treatment Outcome
3.
J Immunol ; 191(9): 4521-30, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24068672

ABSTRACT

Upon activation with T-dependent Ag, B cells enter germinal centers (GC) and upregulate activation-induced deaminase (AID). AID(+) GC B cells then undergo class-switch recombination and somatic hypermutation. Follicular dendritic cells (FDC) are stromal cells that underpin GC and require constitutive signaling through the lymphotoxin (LT) ß receptor to be maintained in a fully mature, differentiated state. Although it was shown that FDC can be dispensable for the generation of affinity-matured Ab, in the absence of FDC it is unclear where AID expression occurs. In a mouse model that lacks mature FDC, as well as other LT-sensitive cells, we show that clusters of AID(+)PNA(+)GL7(+) Ag-specific GC B cells form within the B cell follicles of draining lymph nodes, suggesting that FDC are not strictly required for GC formation. However, later in the primary response, FDC-less GC dissipated prematurely, correlating with impaired affinity maturation. We examined whether GC dissipation was due to a lack of FDC or other LTß receptor-dependent accessory cells and found that, in response to nonreplicating protein Ag, FDC proved to be more critical for long-term GC maintenance. Our study provides a spatial-temporal analysis of Ag-specific B cell activation and AID expression in the context of a peripheral lymph node that lacks FDC-M1(+) CD35(+) FDC and other LT-sensitive cell types, and reveals that FDC are not strictly required for the induction of AID within an organized GC-like environment.


Subject(s)
B-Lymphocytes/immunology , Cytidine Deaminase/metabolism , Dendritic Cells, Follicular/metabolism , Germinal Center/cytology , Animals , Cell Differentiation , Cells, Cultured , Cytidine Deaminase/biosynthesis , Dendritic Cells, Follicular/cytology , Dendritic Cells, Follicular/immunology , Germinal Center/immunology , Germinal Center/metabolism , Lymph Nodes/immunology , Lymphocyte Activation/immunology , Lymphotoxin beta Receptor/immunology , Lymphotoxin beta Receptor/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Complement 3b/metabolism
4.
Prostate Cancer ; 2022: 6499344, 2022.
Article in English | MEDLINE | ID: mdl-35754788

ABSTRACT

Background: The evaluation of tumour-infiltrating lymphocytes (TILs) in solid malignancies has yielded insights into immune regulation within the tumour microenvironment and has also led to the development and optimisation of adoptive T cell therapies. Objectives: This study examined the in vitro expansion of TILs from prostate adenocarcinoma, as a preliminary step to evaluate the potential of TILs for adoptive T cell therapy. Design, Setting, and Participants. Malignant and adjacent nonmalignant tissues were obtained from fifteen men undergoing radical prostatectomy. Interventions. There were no study interventions. Outcome Measurements and Statistical Analysis. Expanded cells were analysed by flow cytometry, and the data was assessed for associations between cell subpopulations and expansion rate. Results: Tumour-infiltrating lymphocytes could be expanded to numbers that would be needed to generate a therapeutic infusion product from nine of 15 malignant specimens (60%). The CD4+ T cells predominated over CD8+ T cells (median 56.8% CD4+, 30.0% CD8+), and furthermore, faster TIL expansion was associated with a higher proportion of CD4+ T cells (median 69.8% in faster-growing cultures; 36.8% in slower-growing cultures). A higher proportion of CD3-CD56+ cells versus CD3+ cells was associated with slower TIL expansion in cultures from malignant specimens (median 13.3% in slower-growing cultures versus 2.05% in faster-growing cultures), but not from nonmalignant specimens. Conclusions: The expansion of TILs for potential therapeutic use is feasible. Our findings also indicate that further examination of TILs from prostate adenocarcinomas may yield insights into mechanisms of regulation of T cells within the tumour microenvironment. Further research is required to evaluate their therapeutic potential.

5.
Sci Rep ; 6: 37215, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27853268

ABSTRACT

Class switch recombination (CSR) in B cells requires the timely repair of DNA double-stranded breaks (DSBs) that result from lesions produced by activation-induced cytidine deaminase (AID). Through a genome-wide RNAi screen, we identified Kin17 as a gene potentially involved in the maintenance of CSR in murine B cells. In this study, we confirm a critical role for Kin17 in CSR independent of AID activity. Furthermore, we make evident that DSBs generated by AID or ionizing radiation require Kin17 for efficient repair and resolution. Our report shows that reduced Kin17 results in an elevated deletion frequency following AID mutational activity in the switch region. In addition, deficiency in Kin17 affects the functionality of multiple DSB repair pathways, namely homologous recombination, non-homologous end-joining, and alternative end-joining. This report demonstrates the importance of Kin17 as a critical factor that acts prior to the repair phase of DSB repair and is of bona fide importance for CSR.


Subject(s)
B-Lymphocytes/immunology , DNA Breaks, Double-Stranded , DNA End-Joining Repair/immunology , DNA-Binding Proteins/immunology , Immunoglobulin Class Switching/immunology , RNA-Binding Proteins/immunology , Cell Line, Tumor , DNA End-Joining Repair/genetics , DNA-Binding Proteins/genetics , Humans , Immunoglobulin Class Switching/genetics , RNA-Binding Proteins/genetics
6.
Cell Rep ; 15(7): 1554-1565, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27160905

ABSTRACT

Class switch recombination (CSR) requires activation-induced deaminase (AID) to instigate double-stranded DNA breaks at the immunoglobulin locus. DNA breaks activate the DNA damage response (DDR) by inducing phosphorylation of histone H2AX followed by non-homologous end joining (NHEJ) repair. We carried out a genome-wide screen to identify CSR factors. We found that Usp22, Eny2, and Atxn7, members of the Spt-Ada-Gcn5-acetyltransferase (SAGA) deubiquitination module, are required for deubiquitination of H2BK120ub following DNA damage, are critical for CSR, and function downstream of AID. The SAGA deubiquitinase activity was required for optimal irradiation-induced γH2AX formation, and failure to remove H2BK120ub inhibits ATM- and DNAPK-induced γH2AX formation. Consistent with this effect, these proteins were found to function upstream of various double-stranded DNA repair pathways. This report demonstrates that deubiquitination of histone H2B impacts the early stages of the DDR and is required for the DNA repair phase of CSR.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Repair , DNA-Activated Protein Kinase/metabolism , DNA-Binding Proteins/metabolism , Histones/metabolism , Immunoglobulin Class Switching/genetics , Multiprotein Complexes/metabolism , Nuclear Proteins/metabolism , Ubiquitination , Animals , Cytidine Deaminase , DNA Breaks, Double-Stranded , DNA End-Joining Repair/radiation effects , DNA Repair/radiation effects , Endopeptidases/metabolism , Homologous Recombination/radiation effects , Mice , RNA Interference , Radiation, Ionizing , Somatic Hypermutation, Immunoglobulin/radiation effects , Transcription Factors/metabolism , Ubiquitin Thiolesterase , Ubiquitination/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL