ABSTRACT
Direct electron transfer between a redox label and an electrode requires a short working distance (<1-2 nm), and in general an affinity biosensor based on direct electron transfer requires a finely smoothed Au electrode to support efficient target binding. Here we report that direct electron transfer over a longer working distance is possible between (i) an anionic π-conjugated polyelectrolyte (CPE) label having many redox-active sites and (ii) a readily prepared, thin polymeric monolayer-modified indium-tin oxide electrode. In addition, the long CPE label (â¼18 nm for 10 kDa) can approach the electrode within the working distance after sandwich-type target-specific binding, and fast CPE-mediated oxidation of ammonia borane along the entire CPE backbone affords high signal amplification.
Subject(s)
DNA/analysis , Polyelectrolytes/chemistry , Electron TransportABSTRACT
Highly sensitive and selective mercury detection in aqueous media is urgently needed because mercury poisoning usually results from exposure to water-soluble forms of mercury by inhalation and/or ingesting. An ionic conjugated oligoelectrolye (M1Q) based on 1,4-bis(styryl)benzene was synthesized as a fluorescent mercury(II) probe. The thioacetal moiety and quaternized ammonium group were incorporated for Hg2+ recognition and water solubility. A neutral Hg2+ probe (M1) was also prepared based on the same molecular backbone, and their sensor characteristics were investigated in a mixture of acetonitrile/water and in water. In the presence of Hg2+, the thioacetal group was converted to aldehyde functionality, and the resulting photoluminescence intensity decreased. In water, M1Q successfully demonstrated highly sensitive detection, showing a binding toward Hg2+ that was ~15 times stronger and a signal on/off ratio twice as high, compared to M1 in acetonitrile/water. The thioacetal deprotection by Hg2+ ions was substantially facilitated in water without an organic cosolvent. The limit of detection was measured to be 7 nM with a detection range of 10-180 nM in 100% aqueous medium.
ABSTRACT
A cationic conjugated polyelectrolyte was designed and synthesized based on poly(fluorene-co-phenylene) containing 5 mol% benzothiadiazole (BT) as a low energy trap and 15-crown-5 as a recognizing group for potassium ions. A potassium ion can form a sandwich-type 2:1 Lewis acid-based complex with 15-crown-5, to cause the intermolecular aggregation of polymers. This facilitates inter-chain fluorescence resonance energy transfer (FRET) to a low-energy BT segment, resulting in fluorescent signal amplification, even at dilute analyte concentrations. Highly sensitive and selective detection of K(+) ions was demonstrated in water. The linear response of ratiometric fluorescent signal as a function of [K(+) ] allows K(+) quantification in a range of nanomolar concentrations with a detection limit of ≈0.7 × 10(-9) M.
Subject(s)
Fluorenes/chemical synthesis , Polymers/chemical synthesis , Thiadiazoles/chemical synthesis , Water/chemistry , Cations, Monovalent , Crown Ethers/chemistry , Fluorenes/chemistry , Fluorescence Resonance Energy Transfer , Polymers/chemistry , Potassium/analysis , Thiadiazoles/chemistryABSTRACT
We report a Förster resonance energy transfer (FRET)-based imaging ensemble for the visualization of membrane potential in living cells. A water-soluble poly(fluorene-cophenylene) conjugated polyelectrolyte (FsPFc10) serves as a FRET donor to a voltage-sensitive dye acceptor (FluoVolt™ ). We observe FRET between FsPFc10 and FluoVolt™ , where the enhancement in FRET-sensitized emission from FluoVolt™ is measured at various donor/acceptor ratios. At a donor/acceptor ratio of 1, the excitation of FluoVolt™ in a FRET configuration results in a three-fold enhancement in its fluorescence emission (compared to when it is excited directly). FsPFc10 efficiently labels the plasma membrane of HEK 293T/17 cells and remains resident with minimal cellular internalization for ~ 1.5 h. The successful plasma membrane-associated colabeling of the cells with the FsPFc10-FluoVolt™ donor-acceptor pair is confirmed by dual-channel confocal imaging. Importantly, cells labeled with FsPFc10 show excellent cellular viability with no adverse effect on cell membrane depolarization. During depolarization of membrane potential, HEK 293T/17 cells labeled with the donor-acceptor FRET pair exhibit a greater fluorescence response in FluoVolt™ emission relative to when FluoVolt™ is used as the sole imaging probe. These results demonstrate the conjugated polyelectrolyte to be a new class of membrane labeling fluorophore for use in voltage sensing schemes.