Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Nat Immunol ; 15(11): 1079-89, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25282160

ABSTRACT

Humoral autoimmunity paralleled by the accumulation of follicular helper T cells (T(FH) cells) is linked to mutation of the gene encoding the RNA-binding protein roquin-1. Here we found that T cells lacking roquin caused pathology in the lung and accumulated as cells of the T(H)17 subset of helper T cells in the lungs. Roquin inhibited T(H)17 cell differentiation and acted together with the endoribonuclease regnase-1 to repress target mRNA encoding the T(H)17 cell-promoting factors IL-6, ICOS, c-Rel, IRF4, IκBNS and IκBζ. This cooperation required binding of RNA by roquin and the nuclease activity of regnase-1. Upon recognition of antigen by the T cell antigen receptor (TCR), roquin and regnase-1 proteins were cleaved by the paracaspase MALT1. Thus, this pathway acts as a 'rheostat' by translating TCR signal strength via graded inactivation of post-transcriptional repressors and differential derepression of targets to enhance T(H)17 differentiation.


Subject(s)
Caspases/metabolism , Neoplasm Proteins/metabolism , Receptors, Antigen, T-Cell/immunology , Ribonucleases/metabolism , Th17 Cells/cytology , Ubiquitin-Protein Ligases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Sequence , Animals , Binding Sites/immunology , Cell Differentiation/immunology , Cell Line , Genes, rel/genetics , HEK293 Cells , Humans , Inducible T-Cell Co-Stimulator Protein/genetics , Interferon Regulatory Factors/genetics , Interleukin-6/genetics , Intracellular Signaling Peptides and Proteins , Lung/immunology , Lung/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein , Nuclear Proteins/genetics , Proteins/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/metabolism , Sequence Alignment , Th17 Cells/immunology , Ubiquitin-Protein Ligases/genetics
2.
Purinergic Signal ; 20(5): 477-486, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38246970

ABSTRACT

Acute kidney injury (AKI) is a critical health issue with high mortality and morbidity rates in hospitalized individuals. The complex pathophysiology and underlying health conditions further complicate AKI management. Growing evidence suggests the pivotal role of ion channels in AKI progression, through promoting tubular cell death and altering immune cell functions. Among these channels, P2X purinergic receptors emerge as key players in AKI pathophysiology. P2X receptors gated by adenosine triphosphate (ATP), exhibit increased extracellular levels of ATP during AKI episodes. More importantly, certain P2X receptor subtypes upon activation exacerbate the situation by promoting the release of extracellular ATP. While therapeutic investigations have primarily focused on P2X4 and P2X7 subtypes in the context of AKI, while understanding about other subtypes still remains limited. Whilst some P2X antagonists show promising results against different types of kidney diseases, their role in managing AKI remains unexplored. Henceforth, understanding the intricate interplay between P2X receptors and AKI is crucial for developing targeted interventions. This review elucidates the functional alterations of all P2X receptors during normal kidney function and AKI, offering insights into their involvement in AKI. Notably, we have highlighted the current knowledge of P2X receptor antagonists and the possibilities to use them against AKI in the future. Furthermore, the review delves into the pathways influenced by activated P2X receptors during AKI, presenting potential targets for future therapeutic interventions against this critical condition.


Subject(s)
Acute Kidney Injury , Receptors, Purinergic P2X , Signal Transduction , Acute Kidney Injury/metabolism , Humans , Receptors, Purinergic P2X/metabolism , Animals , Signal Transduction/physiology , Purinergic P2X Receptor Antagonists/pharmacology , Purinergic P2X Receptor Antagonists/therapeutic use , Adenosine Triphosphate/metabolism
3.
J Immunol ; 209(7): 1348-1358, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36165203

ABSTRACT

Endotoxin tolerance is a state of hyporesponsiveness to LPS, triggered by previous exposure to endotoxin. Such an immunosuppressive state enhances the risks of secondary infection and has been associated with the pathophysiology of sepsis. Although this phenomenon has been extensively studied, its molecular mechanism is not fully explained. Among candidates that play a crucial role in this process are negative regulators of TLR signaling, but the contribution of MCP-induced protein 1 (MCPIP1; Regnase-1) has not been studied yet. To examine whether macrophage expression of MCPIP1 participates in endotoxin tolerance, we used both murine and human primary macrophages devoid of MCPIP1 expression. In our study, we demonstrated that MCPIP1 contributes to LPS hyporesponsiveness induced by subsequent LPS stimulation and macrophage reprogramming. We proved that this mechanism revolves around the deubiquitinase activity of MCPIP1, which inhibits the phosphorylation of MAPK and NF-κB activation. Moreover, we showed that MCPIP1 controlled the level of proinflammatory transcripts in LPS-tolerized cells independently of its RNase activity. Finally, we confirmed these findings applying an in vivo endotoxin tolerance model in wild-type and myeloid MCPIP1-deficient mice. Taken together, this study describes for the first time, to our knowledge, that myeloid MCPIP1 participates in endotoxin tolerance and broadens the scope of known negative regulators of the TLR4 pathway crucial in this phenomenon.


Subject(s)
Lipopolysaccharides , Toll-Like Receptor 4 , Animals , Deubiquitinating Enzymes , Endoribonucleases , Endotoxin Tolerance , Endotoxins , Humans , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Ribonucleases/genetics , Toll-Like Receptor 4/metabolism , Transcription Factors
4.
Immunopharmacol Immunotoxicol ; 46(3): 341-354, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38477877

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is a critical global health issue associated with high mortality rates, particularly in patients undergoing renal transplants and major surgeries. These individuals often receive immunosuppressants to dampen immune responses, but the impact of these drugs on AKI remains unclear. OBJECTIVE: This review aims to provide a detailed understanding of the effects of different classes of immunosuppressants against AKI, elucidating their role in either exacerbating or mitigating the occurrence or progression of AKI. METHODS: Several preclinical and clinical reports were analyzed to evaluate the impact of various immunosuppressants on AKI. Relevant preclinical and clinical studies were reviewed through different databases such as Scopus, PubMed, Google Scholar, and ScienceDirect, and official websites like https://clinicaltrials.gov to understand the mechanisms underlying the effects of immunosuppressants on kidney function. RESULTS AND DISCUSSION: Specific immunosuppressants have been linked to the progression of AKI, while others demonstrate renoprotective effects. However, there is no consensus on the preferred or avoided immunosuppressants for AKI patients. This review outlines the classes of immunosuppressants commonly used and their impact on AKI, providing guidance for physicians in selecting appropriate drugs to prevent or ameliorate AKI. CONCLUSION: Understanding the effects of immunosuppressants on AKI is crucial for optimizing patient care. This review highlights the need for further research to determine the most suitable immunosuppressants for AKI patients, considering both their efficacy and potential side effects.


Subject(s)
Acute Kidney Injury , Immunosuppressive Agents , Humans , Acute Kidney Injury/chemically induced , Acute Kidney Injury/prevention & control , Immunosuppressive Agents/adverse effects , Immunosuppressive Agents/therapeutic use , Animals , Kidney Transplantation/adverse effects
5.
J Cell Physiol ; 238(8): 1716-1731, 2023 08.
Article in English | MEDLINE | ID: mdl-37357431

ABSTRACT

Kidney diseases are serious health problems affecting >800 million individuals worldwide. The high number of affected individuals and the severe consequences of kidney dysfunction demand an intensified effort toward more effective prevention and treatment. The pathophysiology of kidney diseases is complex and comprises diverse organelle dysfunctions including mitochondria and endoplasmic reticulum (ER). The recent findings prove interactions between the ER membrane and nearly all cell compartments and give new insights into molecular events involved in cellular mechanisms in health and disease. Interactions between the ER and mitochondrial membranes, known as the mitochondria-ER contacts regulate kidney physiology by interacting with each other via membrane contact sites (MCS). ER controls mitochondrial dynamics through ER stress sensor proteins or by direct communication via mitochondria-associated ER membrane to activate signaling pathways such as apoptosis, calcium transport, and autophagy. More importantly, these organelle dynamics are found to be regulated by several epigenetic mechanisms such as DNA methylation, histone modifications, and noncoding RNAs and can be a potential therapeutic target against kidney diseases. However, a thorough understanding of the role of epigenetic regulation of organelle dynamics and their functions is not well understood. Therefore, this review will unveil the role of epigenetic mechanisms in regulating organelle dynamics during various types of kidney diseases. Moreover, we will also shed light on different stress origins in organelles leading to kidney disease. Henceforth, by understanding this we can target epigenetic mechanisms to maintain/control organelle dynamics and serve them as a novel therapeutic approach against kidney diseases.


Subject(s)
Kidney Diseases , Mitochondrial Dynamics , Humans , Epigenesis, Genetic/genetics , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Kidney Diseases/genetics , Kidney Diseases/metabolism , Endoplasmic Reticulum Stress/genetics
6.
Angiogenesis ; 26(4): 547-563, 2023 11.
Article in English | MEDLINE | ID: mdl-37507580

ABSTRACT

BACKGROUND: Post-COVID-19 syndrome (PCS) is a lingering disease with ongoing symptoms such as fatigue and cognitive impairment resulting in a high impact on the daily life of patients. Understanding the pathophysiology of PCS is a public health priority, as it still poses a diagnostic and treatment challenge for physicians. METHODS: In this prospective observational cohort study, we analyzed the retinal microcirculation using Retinal Vessel Analysis (RVA) in a cohort of patients with PCS and compared it to an age- and gender-matched healthy cohort (n = 41, matched out of n = 204). MEASUREMENTS AND MAIN RESULTS: PCS patients exhibit persistent endothelial dysfunction (ED), as indicated by significantly lower venular flicker-induced dilation (vFID; 3.42% ± 1.77% vs. 4.64% ± 2.59%; p = 0.02), narrower central retinal artery equivalent (CRAE; 178.1 [167.5-190.2] vs. 189.1 [179.4-197.2], p = 0.01) and lower arteriolar-venular ratio (AVR; (0.84 [0.8-0.9] vs. 0.88 [0.8-0.9], p = 0.007). When combining AVR and vFID, predicted scores reached good ability to discriminate groups (area under the curve: 0.75). Higher PCS severity scores correlated with lower AVR (R = - 0.37 p = 0.017). The association of microvascular changes with PCS severity were amplified in PCS patients exhibiting higher levels of inflammatory parameters. CONCLUSION: Our results demonstrate that prolonged endothelial dysfunction is a hallmark of PCS, and impairments of the microcirculation seem to explain ongoing symptoms in patients. As potential therapies for PCS emerge, RVA parameters may become relevant as clinical biomarkers for diagnosis and therapy management. TRIAL REGISTRATION: This study was previously registered at ClinicalTrials ("All Eyes on PCS-Analysis of the Retinal Microvasculature in Patients with Post-COVID-19 Syndrome". NCT05635552. https://clinicaltrials.gov/ct2/show/NCT05635552 ). Persistent endothelial dysfunction in post-COVID-19 syndrome. Acute SARS-CoV-2 infection indirectly or directly causes endotheliitis in patients. N = 41 PCS patients were recruited and retinal vessel analysis was performed to assess microvascular endothelial function. Images of SVA and DVA are illustrative for RVA data analysis. For each PCS patient and healthy cohort, venular vessel diameter of the three measurement cycles was calculated and plotted on a diameter-time curve. Patients exhibited reduced flicker-induced dilation in veins (vFID) measured by dynamic vessel analysis (DVA) and lower central retinal arteriolar equivalent (CRAE) and arteriolar-venular ratio (AVR) and a tendency towards higher central retinal venular equivalent (CRVE) when compared to SARS-CoV-2 infection naïve participants. Created with BioRender.com.


Subject(s)
COVID-19 , Vascular Diseases , Humans , Post-Acute COVID-19 Syndrome , Prospective Studies , COVID-19/complications , SARS-CoV-2 , Retinal Vessels , Inflammation
7.
Immunity ; 40(3): 389-99, 2014 Mar 20.
Article in English | MEDLINE | ID: mdl-24631154

ABSTRACT

Recognition of cell death by the innate immune system triggers inflammatory responses. However, how these reactions are regulated is not well understood. Here, we identify the inhibitory C-type lectin receptor Clec12a as a specific receptor for dead cells. Both human and mouse Clec12a could physically sense uric acid crystals (monosodium urate, MSU), which are key danger signals for cell-death-induced immunity. Clec12a inhibited inflammatory responses to MSU in vitro, and Clec12a-deficient mice exhibited hyperinflammatory responses after being challenged with MSU or necrotic cells and after radiation-induced thymocyte killing in vivo. Thus, we identified a negative regulatory MSU receptor that controls noninfectious inflammation in response to cell death that has implications for autoimmunity and inflammatory disease.


Subject(s)
Cell Death , Inflammation/metabolism , Lectins, C-Type/metabolism , Receptors, Mitogen/metabolism , Uric Acid/metabolism , Animals , Cell Death/genetics , Cell Death/immunology , Cell Line , Inflammation/genetics , Inflammation/immunology , Lectins, C-Type/genetics , Mice , Mice, Knockout , Models, Biological , Neutrophil Activation/genetics , Neutrophil Activation/immunology , Neutrophils/immunology , Neutrophils/metabolism , Receptors, Mitogen/genetics , Uric Acid/immunology
8.
Article in English | MEDLINE | ID: mdl-38041762

ABSTRACT

Since widespread vaccination against COVID-19, the development of effective antiviral drugs, and the decreasing number of patients with COVID-19 in intensive care, the risk from SARS-CoV-2 infection appears less threatening. However, studies show that a significant number of patients suffer from long-term sequelae, even months after SARS-CoV-2 infection. The so-called post-COVID syndrome (PCS) often presents a diagnostic and treatment challenge for physicians. This study protocol describes the "All Eyes on PCS" study, which aims to investigate the retinal microvasculature in PCS patients and COVID-19-recovered patients to provide new insights into the pathophysiology of PCS. "All Eyes on PCS" is a prospective, case-control study with the primary objective of detecting endothelial dysfunction (ED) in patients with PCS. Therefore, we intend to recruit patients with PCS, fully SARS-CoV-2-infection-recovered (CR) participants, and SARS-CoV-2-infection-naïve (CN) participants. Baseline measurements will include: (1) patient-specific characteristics, (2) biochemistry, (3) retinal vessel analysis (RVA), (4) survey questionnaires as patient-reported outcomes measurements (PROMs), (5) optical coherence tomography (OCT), OCT angiography (OCTA), and adaptive optics (AO), (6) blood pressure recordings, (7) handgrip strength test. After 6 months, baseline measurements will be repeated in the PCS cohort, and after 1 year, a telephone query will be conducted to assess residual symptoms and treatment needs. The aim of this study is to gain insight into the pathophysiology of PCS and to provide an objective biomarker for diagnosis and treatment, while also creating a comprehensive clinical database of PCS patients.ClinicalTrials.gov Identifier: NCT05635552; Date: 2.12.2022.

9.
Int J Mol Sci ; 24(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37175735

ABSTRACT

In this study, we investigated the impact of the uremic toxin indoxyl sulfate on macrophages and tubular epithelial cells and its role in modulating the response to lipopolysaccharide (LPS). Indoxyl sulfate accumulates in the blood of patients with chronic kidney disease (CKD) and is a predictor of overall and cardiovascular morbidity/mortality. To simulate the uremic condition, primary macrophages and tubular epithelial cells were incubated with indoxyl sulfate at low concentrations as well as concentrations found in uremic patients, both alone and upon LPS challenge. The results showed that indoxyl sulfate alone induced the release of reactive oxygen species and low-grade inflammation in macrophages. Moreover, combined with LPS (proinflammatory conditions), indoxyl sulfate significantly increased TNF-α, CCL2, and IL-10 release but did not significantly affect the polarization of macrophages. Pre-treatment with indoxyl sulfate following LPS challenge induced the expression of aryl hydrocarbon receptor (Ahr) and NADPH oxidase 4 (Nox4) which generate reactive oxygen species (ROS). Further, experiments with tubular epithelial cells revealed that indoxyl sulfate might induce senescence in parenchymal cells and therefore participate in the progression of inflammaging. In conclusion, this study provides evidence that indoxyl sulfate provokes low-grade inflammation, modulates macrophage function, and enhances the inflammatory response associated with LPS. Finally, indoxyl sulfate signaling contributes to the senescence of tubular epithelial cells during injury.


Subject(s)
Indican , Uremic Toxins , Humans , Indican/metabolism , Reactive Oxygen Species/metabolism , Lipopolysaccharides/toxicity , Lipopolysaccharides/metabolism , Inflammation/metabolism , Macrophages/metabolism , Epithelial Cells/metabolism
10.
J Cell Mol Med ; 26(20): 5267-5276, 2022 10.
Article in English | MEDLINE | ID: mdl-36098213

ABSTRACT

Hypercholesterolemia exacerbates autoimmune response and accelerates the progression of several autoimmune disorders, but the mechanistic basis is not well understood. We recently demonstrated that hypercholesterolemia is associated with increased serum extracellular DNA levels secondary to a defect in DNase-mediated clearance of DNA. In this study, we tested whether the impaired DNase response plays a causal role in enhancing anti-nuclear antibody levels and renal immune complex deposition in an Apoe-/- mouse model of hypercholesterolemia. We demonstrate that hypercholesterolemic mice have enhanced anti-ds-DNA and anti-nucleosome antibody levels which is associated with increased immune complex deposition in the renal glomerulus. Importantly, treatment with DNase1 led to a decrease in both the autoantibody levels as well as renal pathology. Additionally, we show that humans with hypercholesterolemia have decreased systemic DNase activity and increased anti-nuclear antibodies. In this context, our data suggest that recombinant DNase1 may be an attractive therapeutic strategy to lower autoimmune response and disease progression in patients with autoimmune disorders associated with concomitant hypercholesterolemia.


Subject(s)
Autoimmune Diseases , Deoxyribonucleases , Hypercholesterolemia , Lupus Erythematosus, Systemic , Animals , Antigen-Antibody Complex , Autoantibodies , DNA , Deoxyribonucleases/metabolism , Humans , Hypercholesterolemia/genetics , Mice , Mice, Knockout, ApoE
11.
PLoS Pathog ; 15(5): e1007773, 2019 05.
Article in English | MEDLINE | ID: mdl-31107907

ABSTRACT

Neutrophil-derived networks of DNA-composed extracellular fibers covered with antimicrobial molecules, referred to as neutrophil extracellular traps (NETs), are recognized as a physiological microbicidal mechanism of innate immunity. The formation of NETs is also classified as a model of a cell death called NETosis. Despite intensive research on the NETs formation in response to pathogens, the role of specific bacteria-derived virulence factors in this process, although postulated, is still poorly understood. The aim of our study was to determine the role of gingipains, cysteine proteases responsible for the virulence of P. gingivalis, on the NETosis process induced by this major periodontopathogen. We showed that NETosis triggered by P. gingivalis is gingipain dependent since in the stark contrast to the wild-type strain (W83) the gingipain-null mutant strain only slightly induced the NETs formation. Furthermore, the direct effect of proteases on NETosis was documented using purified gingipains. Notably, the induction of NETosis was dependent on the catalytic activity of gingipains, since proteolytically inactive forms of enzymes showed reduced ability to trigger the NETs formation. Mechanistically, gingipain-induced NETosis was dependent on proteolytic activation of protease-activated receptor-2 (PAR-2). Intriguingly, both P. gingivalis and purified Arg-specific gingipains (Rgp) induced NETs that not only lacked bactericidal activity but instead stimulated the growth of bacteria species otherwise susceptible to killing in NETs. This protection was executed by proteolysis of bactericidal components of NETs. Taken together, gingipains play a dual role in NETosis: they are the potent direct inducers of NETs formation but in the same time, their activity prevents P. gingivalis entrapment and subsequent killing. This may explain a paradox that despite the massive accumulation of neutrophils and NETs formation in periodontal pockets periodontal pathogens and associated pathobionts thrive in this environment.


Subject(s)
Adhesins, Bacterial/immunology , Bacteroidaceae Infections/immunology , Cysteine Endopeptidases/immunology , Extracellular Traps/immunology , Neutrophils/immunology , Peritonitis/immunology , Porphyromonas gingivalis/immunology , Porphyromonas gingivalis/pathogenicity , Receptor, PAR-2/metabolism , Adhesins, Bacterial/metabolism , Animals , Bacteroidaceae Infections/metabolism , Bacteroidaceae Infections/microbiology , Bacteroidaceae Infections/pathology , Cells, Cultured , Cysteine Endopeptidases/metabolism , Extracellular Traps/microbiology , Female , Gingipain Cysteine Endopeptidases , Humans , Mice , Mice, Inbred C57BL , Neutrophils/microbiology , Neutrophils/pathology , Peritonitis/metabolism , Peritonitis/microbiology , Receptor, PAR-2/immunology , Signal Transduction
12.
J Am Soc Nephrol ; 31(12): 2773-2792, 2020 12.
Article in English | MEDLINE | ID: mdl-32938648

ABSTRACT

BACKGROUND: The roles of asymptomatic hyperuricemia or uric acid (UA) crystals in CKD progression are unknown. Hypotheses to explain links between UA deposition and progression of CKD include that (1) asymptomatic hyperuricemia does not promote CKD progression unless UA crystallizes in the kidney; (2) UA crystal granulomas may form due to pre-existing CKD; and (3) proinflammatory granuloma-related M1-like macrophages may drive UA crystal-induced CKD progression. METHODS: MALDI-FTICR mass spectrometry, immunohistochemistry, 3D confocal microscopy, and flow cytometry were used to characterize a novel mouse model of hyperuricemia and chronic UA crystal nephropathy with granulomatous nephritis. Interventional studies probed the role of crystal-induced inflammation and macrophages in the pathology of progressive CKD. RESULTS: Asymptomatic hyperuricemia alone did not cause CKD or drive the progression of aristolochic acid I-induced CKD. Only hyperuricemia with UA crystalluria due to urinary acidification caused tubular obstruction, inflammation, and interstitial fibrosis. UA crystal granulomas surrounded by proinflammatory M1-like macrophages developed late in this process of chronic UA crystal nephropathy and contributed to the progression of pre-existing CKD. Suppressing M1-like macrophages with adenosine attenuated granulomatous nephritis and the progressive decline in GFR. In contrast, inhibiting the JAK/STAT inflammatory pathway with tofacitinib was not renoprotective. CONCLUSIONS: Asymptomatic hyperuricemia does not affect CKD progression unless UA crystallizes in the kidney. UA crystal granulomas develop late in chronic UA crystal nephropathy and contribute to CKD progression because UA crystals trigger M1-like macrophage-related interstitial inflammation and fibrosis. Targeting proinflammatory macrophages, but not JAK/STAT signaling, can attenuate granulomatous interstitial nephritis.


Subject(s)
Hyperuricemia/complications , Hyperuricemia/pathology , Nephritis, Interstitial/etiology , Nephritis, Interstitial/pathology , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/pathology , Animals , Asymptomatic Diseases , Disease Models, Animal , Disease Progression , Granuloma/etiology , Granuloma/metabolism , Granuloma/pathology , Hyperuricemia/metabolism , Mice , Nephritis, Interstitial/blood , Renal Insufficiency, Chronic/blood
13.
Cancer Immunol Immunother ; 69(10): 2101-2112, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32448983

ABSTRACT

Pancreatic ductal adenocarcinoma is characterized by a strong immunosuppressive network with a dense infiltration of myeloid cells including myeloid-derived suppressor cells (MDSC). Two distinct populations of MDSC have been defined: polymorphonuclear MDSC (PMN-MDSC) and monocytic MDSC (M-MDSC). Several factors influence the development and function of MDSC including the transcription factor interferon regulatory factor 4 (IRF4). Here, we show that IRF4 deficiency accelerates tumor growth and reduces survival, accompanied with a dense tumor infiltration with PMN-MDSC and reduced numbers of CD8+ T cells. As IRF4 has been described to modulate myeloid cell development and function, particularly of PMN-MDSC, we analyzed its role using MDSC-specific IRF4 knockout mice with the Ly6G or LysM knock-in allele expressing Cre recombinase and Irf4flox. In GM-CSF-driven bone marrow cultures, IRF4 deficiency increased the frequency of MDSC-like cells with a strong T cell suppressive capacity. Myeloid (LysM)-specific depletion of IRF4 led to increased tumor weight and a moderate splenic M-MDSC expansion in tumor-bearing mice. PMN cell (Ly6G)-specific depletion of IRF4, however, did not influence tumor progression or MDSC accumulation in vivo in accordance with our finding that IRF4 is not expressed in PMN-MDSC. This study demonstrates a critical role of IRF4 in the generation of an immunosuppressive tumor microenvironment in pancreatic cancer, which is independent of IRF4 expression in PMN-MDSC.


Subject(s)
Biomarkers, Tumor/analysis , CD8-Positive T-Lymphocytes/immunology , Interferon Regulatory Factors/physiology , Myeloid-Derived Suppressor Cells/immunology , Pancreatic Neoplasms/immunology , Tumor Microenvironment/immunology , Animals , Apoptosis , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Cell Proliferation , Disease Models, Animal , Humans , Immunosuppression Therapy , Mice , Mice, Knockout , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Prognosis , Survival Rate , Tumor Cells, Cultured
14.
Int J Mol Sci ; 21(19)2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32977372

ABSTRACT

Growth differentiation factor 15 (GDF15) is a member of the transforming growth factor-ß (TGF-ß) cytokine family and an inflammation-associated protein. Here, we investigated the role of GDF15 in murine anti-glomerular basement membrane (GBM) glomerulonephritis. Glomerulonephritis induction in mice induced systemic expression of GDF15. Moreover, we demonstrate the protective effects for GDF15, as GDF15-deficient mice exhibited increased proteinuria with an aggravated crescent formation and mesangial expansion in anti-GBM nephritis. Herein, GDF15 was required for the regulation of T-cell chemotactic chemokines in the kidney. In addition, we found the upregulation of the CXCR3 receptor in activated T-cells in GDF15-deficient mice. These data indicate that CXCL10/CXCR3-dependent-signaling promotes the infiltration of T cells into the organ during acute inflammation controlled by GDF15. Together, these results reveal a novel mechanism limiting the migration of lymphocytes to the site of inflammation during glomerulonephritis.


Subject(s)
Cell Movement/immunology , Glomerular Basement Membrane/immunology , Glomerulonephritis, Membranous/immunology , Growth Differentiation Factor 15/immunology , Proteinuria/immunology , T-Lymphocytes/immunology , Animals , Cell Movement/genetics , Chemokine CXCL10/genetics , Chemokine CXCL10/immunology , Glomerular Basement Membrane/pathology , Glomerulonephritis, Membranous/genetics , Glomerulonephritis, Membranous/pathology , Growth Differentiation Factor 15/genetics , Mice , Mice, Knockout , Proteinuria/genetics , Proteinuria/pathology , Receptors, CXCR3/genetics , Receptors, CXCR3/immunology , T-Lymphocytes/pathology
15.
Am J Physiol Renal Physiol ; 316(2): F277-F291, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30403164

ABSTRACT

Renal ischemia-reperfusion injury (IRI) leads to acute kidney injury or delayed allograft function, which predisposes to fibrosis in the native kidney or kidney transplant. Here we investigated the role of the signal transducer and activator of transcription 1 (STAT1) in inflammatory responses following renal IRI. Our study showed that a subsequent stimulation of Janus-activated kinase 2/STAT1 and Toll-like receptor 4 pathways led to greater STAT1 activation followed by increased cytokine transcription compared with single-pathway stimulation in murine renal tubular cells. Moreover, we observed increased activation of STAT1 under hypoxic conditions. In vivo, STAT1-/- mice displayed less acute tubular necrosis and decreased macrophage infiltration 24 h after renal ischemia. However, investigation of the healing phase (30 days after IRI) revealed significantly more fibrosis in STAT1-/- than in wild-type kidneys. In addition, we demonstrated increased macrophage infiltration in STAT1-/- kidneys. Flow cytometry analysis revealed that STAT1 deficiency drives an alternatively activated macrophage phenotype, which is associated with downregulated cluster of differentiation 80 expression, decreased intracellular reactive oxygen species production, and enhanced ability for phagocytosis. Furthermore, we detected immunohistochemically enhanced STAT1 expression in human renal allograft biopsies with no interstitial fibrosis/tubular atrophy (IF/TA) compared with specimens with severe IF/TA without specific etiology. Thus, STAT1 activation drives macrophages toward an alternatively activated phenotype and enhances fibrogenesis indicating a potential STAT1-driven protective mechanism in tissue repair after ischemic injury.


Subject(s)
Epithelial Cells/metabolism , Kidney Diseases/metabolism , Kidney Tubules/metabolism , Macrophage Activation , Macrophages/metabolism , Reperfusion Injury/metabolism , STAT1 Transcription Factor/metabolism , Adult , Aged , Animals , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Epithelial Cells/pathology , Female , Fibrosis , Humans , Kidney Diseases/genetics , Kidney Diseases/pathology , Kidney Diseases/prevention & control , Kidney Tubules/pathology , Macrophages/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Phenotype , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Reperfusion Injury/prevention & control , STAT1 Transcription Factor/deficiency , STAT1 Transcription Factor/genetics , Signal Transduction
16.
J Immunol ; 199(4): 1440-1452, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28701510

ABSTRACT

Activation of various innate immune receptors results in IL-1 receptor-associated kinase (IRAK)-1/IRAK-4-mediated signaling and secretion of proinflammatory cytokines such as IL-12, IL-6, or TNF-α, all of which are implicated in tissue injury and elevated during tissue remodeling processes. IRAK-M, also known as IRAK-3, is an inhibitor of proinflammatory cytokine and chemokine expression in intrarenal macrophages. Innate immune activation contributes to both acute kidney injury and tissue remodeling that is associated with chronic kidney disease (CKD). Our study assessed the contribution of macrophages in CKD and the role of IRAK-M in modulating disease progression. To evaluate the effect of IRAK-M in chronic renal injury in vivo, a mouse model of unilateral ureteral obstruction (UUO) was employed. The expression of IRAK-M increased within 2 d after UUO in obstructed compared with unobstructed kidneys. Mice deficient in IRAK-M were protected from fibrosis and displayed a diminished number of alternatively activated macrophages. Compared to wild-type mice, IRAK-M-deficient mice showed reduced tubular injury, leukocyte infiltration, and inflammation following renal injury as determined by light microscopy, immunohistochemistry, and intrarenal mRNA expression of proinflammatory and profibrotic mediators. Taken together, these results strongly support a role for IRAK-M in renal injury and identify IRAK-M as a possible modulator in driving an alternatively activated profibrotic macrophage phenotype in UUO-induced CKD.


Subject(s)
Fibrosis/immunology , Interleukin-1 Receptor-Associated Kinases/immunology , Kidney/pathology , Macrophage Activation , Macrophages/cytology , Macrophages/immunology , Renal Insufficiency, Chronic/immunology , Animals , Cytokines/immunology , Disease Models, Animal , Disease Progression , Fibrosis/pathology , Humans , Immunomodulation , Inflammation/pathology , Interleukin-1 Receptor-Associated Kinases/deficiency , Interleukin-1 Receptor-Associated Kinases/genetics , Kidney/immunology , Mice , Mice, Inbred C57BL , Signal Transduction , Tumor Necrosis Factor-alpha/immunology , Ureteral Obstruction/pathology
18.
J Am Soc Nephrol ; 28(3): 761-768, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27612997

ABSTRACT

Intrarenal crystals trigger inflammation and renal cell necroptosis, processes that involve TNF receptor (TNFR) signaling. Here, we tested the hypothesis that TNFRs also have a direct role in tubular crystal deposition and progression of hyperoxaluria-related CKD. Immunohistochemical analysis revealed upregulated tubular expression of TNFR1 and TNFR2 in human and murine kidneys with calcium oxalate (CaOx) nephrocalcinosis-related CKD compared with controls. Western blot and mRNA expression analyses in mice yielded consistent data. When fed an oxalate-rich diet, wild-type mice developed progressive CKD, whereas Tnfr1-, Tnfr2-, and Tnfr1/2-deficient mice did not. Despite identical levels of hyperoxaluria, Tnfr1-, Tnfr2-, and Tnfr1/2-deficient mice also lacked the intrarenal CaOx deposition and tubular damage observed in wild-type mice. Inhibition of TNFR signaling prevented the induced expression of the crystal adhesion molecules, CD44 and annexin II, in tubular epithelial cells in vitro and in vivo, and treatment with the small molecule TNFR inhibitor R-7050 partially protected hyperoxaluric mice from nephrocalcinosis and CKD. We conclude that TNFR signaling is essential for CaOx crystal adhesion to the luminal membrane of renal tubules as a fundamental initiating mechanism of oxalate nephropathy. Furthermore, therapeutic blockade of TNFR might delay progressive forms of nephrocalcinosis in oxalate nephropathy, such as primary hyperoxaluria.


Subject(s)
Hyperoxaluria/complications , Kidney Calculi/etiology , Receptors, Tumor Necrosis Factor, Type II/physiology , Receptors, Tumor Necrosis Factor, Type I/physiology , Animals , Crystallization , Humans , Hyperoxaluria/metabolism , Mice , Mice, Inbred C57BL
19.
Clin Immunol ; 185: 86-94, 2017 12.
Article in English | MEDLINE | ID: mdl-27423476

ABSTRACT

The pathogenesis of systemic lupus erythematosus (SLE) and lupus nephritis is complex but no longer enigmatic. Much progress has been made to on the polygenetic origin of lupus in identifying gene variants that permit the loss of tolerance against nuclear autoantigens. Along the same line in about 50% of lupus patients additional genetic weaknesses promote immune complex glomerulonephritis and filtration barrier dysfunction. Here we briefly summarize the pathogenesis of SLE with a focus on loss of tolerance and the role of toll-like receptors in the "pseudo"-antiviral immunity concept of systemic lupus. In addition, we discuss the local role of Toll-like receptors in intrarenal inflammation and kidney remodeling.


Subject(s)
Lupus Nephritis/immunology , Toll-Like Receptors/immunology , Animals , Humans , Kidney/immunology
20.
Kidney Int ; 89(1): 113-26, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26398497

ABSTRACT

Accumulation of inflammatory cells in different renal compartments is a hallmark of progressive kidney diseases including glomerulonephritis (GN). Lymphotoxin ß receptor (LTßR) signaling is crucial for the formation of lymphoid tissue, and inhibition of LTßR signaling has ameliorated several non-renal inflammatory models. Therefore, we tested whether LTßR signaling could also have a role in renal injury. Renal biopsies from patients with GN were found to express both LTα and LTß ligands, as well as LTßR. The LTßR protein and mRNA were localized to tubular epithelial cells, parietal epithelial cells, crescents, and cells of the glomerular tuft, whereas LTß was found on lymphocytes and tubular epithelial cells. Human tubular epithelial cells, mesangial cells, and mouse parietal epithelial cells expressed both LTα and LTß mRNA upon stimulation with TNF in vitro. Several chemokine mRNAs and proteins were expressed in response to LTßR signaling. Importantly, in a murine lupus model, LTßR blockade improved renal function without the reduction of serum autoantibody titers or glomerular immune complex deposition. Thus, a preclinical mouse model and human studies strongly suggest that LTßR signaling is involved in renal injury and may be a suitable therapeutic target in renal diseases.


Subject(s)
Glomerulonephritis, IGA/metabolism , Lupus Nephritis/metabolism , Lymphotoxin beta Receptor/antagonists & inhibitors , Lymphotoxin beta Receptor/metabolism , RNA, Messenger/analysis , Signal Transduction , Adult , Animals , Cell Line , Chemokines/genetics , Chemokines/metabolism , Disease Models, Animal , Epithelial Cells/chemistry , Epithelial Cells/metabolism , Female , Glomerulonephritis, IGA/genetics , Humans , Immunoglobulins/pharmacology , Kidney Glomerulus/chemistry , Kidney Glomerulus/pathology , Kidney Tubules/chemistry , Kidney Tubules/metabolism , Kidney Tubules/pathology , Ligands , Lupus Nephritis/genetics , Lymphocytes/chemistry , Lymphotoxin beta Receptor/analysis , Lymphotoxin beta Receptor/genetics , Lymphotoxin-alpha/analysis , Lymphotoxin-alpha/genetics , Lymphotoxin-alpha/metabolism , Lymphotoxin-beta/analysis , Lymphotoxin-beta/genetics , Lymphotoxin-beta/metabolism , Male , Mesangial Cells/metabolism , Mice , Middle Aged , Signal Transduction/drug effects , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL