Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters

Publication year range
1.
Glia ; 70(5): 820-841, 2022 05.
Article in English | MEDLINE | ID: mdl-35019164

ABSTRACT

Fecal-oral contamination promotes malnutrition pathology. Lasting consequences of early life malnutrition include cognitive impairment, but the underlying pathology and influence of gut microbes remain largely unknown. Here, we utilize an established murine model combining malnutrition and iterative exposure to fecal commensals (MAL-BG). The MAL-BG model was analyzed in comparison to malnourished (MAL mice) and healthy (CON mice) controls. Malnourished mice display poor spatial memory and learning plasticity, as well as altered microglia, non-neuronal CNS cells that regulate neuroimmune responses and brain plasticity. Chronic fecal-oral exposures shaped microglial morphology and transcriptional profile, promoting phagocytic features in MAL-BG mice. Unexpectedly, these changes occurred independently from significant cytokine-induced inflammation or blood-brain barrier (BBB) disruption, key gut-brain pathways. Metabolomic profiling of the MAL-BG cortex revealed altered polyunsaturated fatty acid (PUFA) profiles and systemic lipoxidative stress. In contrast, supplementation with an ω3 PUFA/antioxidant-associated diet (PAO) mitigated cognitive deficits within the MAL-BG model. These findings provide valued insight into the malnourished gut microbiota-brain axis, highlighting PUFA metabolism as a potential therapeutic target.


Subject(s)
Gastrointestinal Microbiome , Malnutrition , Animals , Cognition , Gastrointestinal Microbiome/physiology , Malnutrition/complications , Mice , Mice, Inbred C57BL , Microglia
2.
J Cell Sci ; 133(2)2020 01 23.
Article in English | MEDLINE | ID: mdl-31932504

ABSTRACT

Mesenchymal stem cells (MSCs) are essential for the regenerative process; however, biological aging and environmental stress can induce senescence - an irreversible state of growth arrest - that not only affects the behavior of cells but also disrupts their ability to restore tissue integrity. While abnormal tissue properties, including increased extracellular matrix stiffness, are linked with the risk of developing breast cancer, the role and contribution of senescent MSCs to the disease progression to malignancy are not well understood. Here, we investigated senescence-associated biophysical changes in MSCs and how this influences cancer cell behavior in a 3D matrix interface model. Although senescent MSCs were far less motile than pre-senescent MSCs, they induced an invasive breast cancer phenotype, characterized by increased spheroid growth and cell invasion in collagen gels. Further analysis of collagen gels using second-harmonic generation showed increased collagen density when senescent MSCs were present, suggesting that senescent MSCs actively remodel the surrounding matrix. This study provides direct evidence of the pro-malignant effects of senescent MSCs in tumors.


Subject(s)
Breast Neoplasms/genetics , Extracellular Matrix/metabolism , Mesenchymal Stem Cells/metabolism , Cell Proliferation , Female , Humans , Phenotype , Tumor Microenvironment
3.
Infect Immun ; 87(1)2019 01.
Article in English | MEDLINE | ID: mdl-30323028

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen that causes nosocomial pneumonia and infects patients with cystic fibrosis. P. aeruginosa lung infections are difficult to treat due to bacterial resistance to antibiotics, and strains with multidrug resistance are becoming more prevalent. Here, we examined the use of a small host defense peptide, innate defense regulator 1002 (IDR-1002), in an acute P. aeruginosa lung infection in vivo IDR-1002 significantly reduced the bacterial burden in bronchoalveolar lavage fluid (BALF), as well as MCP-1 in BALF and serum, KC in serum, and interleukin 6 (IL-6) in BALF. Transcriptome sequencing (RNA-Seq) was conducted on lungs and whole blood, and the effects of P. aeruginosa, IDR-1002, and the combination of P. aeruginosa and IDR-1002 were evaluated. Differential gene expression analysis showed that P. aeruginosa increased multiple inflammatory and innate immune pathways, as well as affected hemostasis, matrix metalloproteinases, collagen biosynthesis, and various metabolism pathways in the lungs and/or blood. Infected mice treated with IDR-1002 had significant changes in gene expression compared to untreated infected mice, with fewer differentially expressed genes associated with the inflammatory and innate immune responses to microbial infection, and treatment also affected morphogenesis, certain metabolic pathways, and lymphocyte activation. Overall, these results showed that IDR-1002 was effective in treating P. aeruginosa acute lung infections and associated inflammation.


Subject(s)
Antimicrobial Cationic Peptides/administration & dosage , Bacteremia/pathology , Pneumonia/pathology , Pseudomonas Infections/pathology , Animals , Bacteremia/drug therapy , Bacterial Load , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/microbiology , Chemokine CCL2/analysis , Disease Models, Animal , Female , Gene Expression Profiling , Mice, Inbred C57BL , Pneumonia/drug therapy , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/isolation & purification , Serum/chemistry , Serum/microbiology , Treatment Outcome
4.
Bioinformatics ; 34(18): 3225-3227, 2018 09 15.
Article in English | MEDLINE | ID: mdl-29688253

ABSTRACT

Summary: Here, we present MetaBridge, a tool that collates protein interactors (curated metabolite-enzyme interactions) that influence the levels of specific metabolites including both biosynthetic and degradative enzymes. This enables network-based integrative analysis of metabolomics data with other omics data types. MetaBridge is designed to complement a systems-biology approach to analysis, pairing well with network analysis tools such as NetworkAnalyst.ca, but can be used in any bioinformatics workflow. Availability and implementation: MetaBridge has been implemented as a web tool at https://www.metabridge.org, and the source code is available at https://github.com/samhinshaw/metabridge_shiny (GNU GPLv3).


Subject(s)
Metabolic Networks and Pathways , Metabolomics/methods , Software , Systems Biology/methods , Humans
5.
Mol Cell Neurosci ; 92: 1-11, 2018 10.
Article in English | MEDLINE | ID: mdl-29936143

ABSTRACT

E2F1 is a transcription factor classically known to regulate G0/G1 to S phase progression in the cell cycle. In addition, E2F1 also regulates a wide range of apoptotic genes and thus has been well studied in the context of neuronal death and neurodegenerative diseases. However, its function and regulation in the mature central nervous system are not well understood. Alternative splicing is a well-conserved post-transcriptional mechanism common in cells of the CNS and is necessary to generate diverse functional modifications to RNA or protein products from genes. Heretofore, physiologically significant alternatively spliced E2F1 transcripts have not been reported. In the present study, we report the identification of two novel alternatively spliced E2F1 transcripts: E2F1b, an E2F1 transcript retaining intron 5, and E2F1c, an E2F1 transcript excluding exon 6. These alternatively spliced transcripts are observed in the brain and neural cell types including neurons, astrocytes, and undifferentiated oligodendrocytes. The expression of these E2F1 transcripts is distinct during maturation of primary hippocampal neuroglial cells. Pharmacologically-induced global translation inhibition with cycloheximide, anisomycin or thapsigargin lead to significantly reduced expression of E2F1a, E2F1b and E2F1c. Conversely, increasing neuronal activity by elevating the concentration of potassium chloride selectively increased the expression of E2F1b. Furthermore, experiments expressing these variants in vitro show the transcripts can be translated to generate a protein product. Taken together, our data suggest that the alternatively spliced E2F1 transcript behave differently than the E2F1a transcript, and our results provide a foundation for future investigation of the function of E2F1 splice variants in the CNS.


Subject(s)
Alternative Splicing , E2F1 Transcription Factor/genetics , Hippocampus/metabolism , Animals , Cells, Cultured , E2F1 Transcription Factor/metabolism , Hippocampus/cytology , Neuroglia/metabolism , Neurons/metabolism , Rats , Rats, Sprague-Dawley
6.
Front Immunol ; 15: 1405376, 2024.
Article in English | MEDLINE | ID: mdl-39015565

ABSTRACT

Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen capable of exploiting barriers and immune defects to cause chronic lung infections in conditions such as cystic fibrosis. In these contexts, host immune responses are ineffective at clearing persistent bacterial infection, instead driving a cycle of inflammatory lung damage. This review outlines key components of the host immune response to chronic P. aeruginosa infection within the lung, beginning with initial pathogen recognition, followed by a robust yet maladaptive innate immune response, and an ineffective adaptive immune response that propagates lung damage while permitting bacterial persistence. Untangling the interplay between host immunity and chronic P. aeruginosa infection will allow for the development and refinement of strategies to modulate immune-associated lung damage and potentiate the immune system to combat chronic infection more effectively.


Subject(s)
Host-Pathogen Interactions , Immunity, Innate , Pseudomonas Infections , Pseudomonas aeruginosa , Humans , Pseudomonas aeruginosa/immunology , Pseudomonas Infections/immunology , Pseudomonas Infections/microbiology , Chronic Disease , Animals , Host-Pathogen Interactions/immunology , Adaptive Immunity , Lung Diseases/immunology , Lung Diseases/microbiology , Cystic Fibrosis/immunology , Cystic Fibrosis/microbiology , Cystic Fibrosis/complications , Lung/immunology , Lung/microbiology
7.
Environ Pollut ; 342: 123087, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38061431

ABSTRACT

Traffic-related air pollution (TRAP) exposure is associated with systemic health effects, which can be studied using blood-based markers. Although we have previously shown that high TRAP concentrations alter the plasma proteome, the concentration-response relationship between blood proteins and TRAP is unexplored in controlled human exposure studies. We aimed to identify concentration-dependent plasma markers of diesel exhaust (DE), a model of TRAP. Fifteen healthy non-smokers were enrolled into a double-blinded, crossover study where they were exposed to filtered air (FA) and DE at 20, 50 and 150 µg/m3 PM2.5 for 4h, separated by ≥ 4-week washouts. We collected blood at 24h post-exposure and used label-free mass spectrometry to quantify proteins in plasma. Proteins exhibiting a concentration-response, as determined by linear mixed effects models (LMEMs), were assessed for pathway enrichment using WebGestalt. Top candidates, identified by sparse partial least squares discriminant analysis and LMEMs, were confirmed using enzyme-linked immunoassays. Thereafter, we assessed correlations between proteins that showed a DE concentration-response and acute inflammatory endpoints, forced expiratory volume in 1 s (FEV1) and methacholine provocation concentration causing a 20% drop in FEV1 (PC20). DE exposure was associated with concentration-dependent alterations in 45 proteins, which were enriched in complement pathways. Of the 9 proteins selected for confirmatory immunoassays, based on complementary bioinformatic approaches to narrow targets and availability of high-quality assays, complement factor I (CFI) exhibited a significant concentration-dependent decrease (-0.02 µg/mL per µg/m3 of PM2.5, p = 0.04). Comparing to FA at discrete concentrations, CFI trended downward at 50 (-2.14 ± 1.18, p = 0.08) and significantly decreased at 150 µg/m3 PM2.5 (-2.93 ± 1.18, p = 0.02). CFI levels were correlated with FEV1, PC20 and nasal interleukin (IL)-6 and IL-1ß. This study details concentration-dependent alterations in the plasma proteome following DE exposure at concentrations relevant to occupational and community settings. CFI shows a robust concentration-response and association with established measures of airway function and inflammation.


Subject(s)
Air Pollutants , Vehicle Emissions , Humans , Vehicle Emissions/toxicity , Vehicle Emissions/analysis , Proteome , Cross-Over Studies , Respiratory Function Tests , Interleukin-6 , Particulate Matter/toxicity , Particulate Matter/analysis , Air Pollutants/toxicity , Air Pollutants/analysis
8.
JAMA Pediatr ; 178(4): 391-400, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38372989

ABSTRACT

Importance: Appendicitis is the most common indication for urgent surgery in the pediatric population, presenting across a range of severity and with variable complications. Differentiating simple appendicitis (SA) and perforated appendicitis (PA) on presentation may help direct further diagnostic workup and appropriate therapy selection, including antibiotic choice and timing of surgery. Objective: To provide a mechanistic understanding of the differences in disease severity of appendicitis with the objective of developing improved diagnostics and treatments, specifically for the pediatric population. Design, Setting, and Participants: The Gene Expression Profiling of Pediatric Appendicitis (GEPPA) study was a single-center prospective exploratory diagnostic study with transcriptomic profiling of peripheral blood collected from a cohort of children aged 5 to 17 years with abdominal pain and suspected appendicitis between November 2016 and April 2017 at the Alberta Children's Hospital in Calgary, Alberta, Canada, with data analysis reported in August 2023. There was no patient follow-up in this study. Exposure: SA, PA, or nonappendicitis abdominal pain. Main Outcomes and Measures: Blood transcriptomics was used to develop a hypothesis of underlying mechanistic differences between SA and PA to build mechanistic hypotheses and blood-based diagnostics. Results: Seventy-one children (mean [SD] age, 11.8 [3.0] years; 48 [67.6%] male) presenting to the emergency department with abdominal pain and suspected appendicitis were investigated using whole-blood transcriptomics. A central role for immune system pathways was revealed in PA, including a dampening of major innate interferon responses. Gene expression changes in patients with PA were consistent with downregulation of immune response and inflammation pathways and shared similarities with gene expression signatures derived from patients with sepsis, including the most severe sepsis endotypes. Despite the challenges in identifying early biomarkers of severe appendicitis, a 4-gene signature that was predictive of PA compared to SA, with an accuracy of 85.7% (95% CI, 72.8-94.1) was identified. Conclusions: This study found that PA was complicated by a dysregulated immune response. This finding should inform improved diagnostics of severity, early management strategies, and prevention of further postsurgical complications.


Subject(s)
Appendicitis , Sepsis , Child , Humans , Male , Female , Appendicitis/diagnosis , Appendicitis/genetics , Prospective Studies , Genetic Markers , Gene Expression Profiling , Alberta , Abdominal Pain/genetics
9.
Sci Rep ; 14(1): 11444, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38769383

ABSTRACT

Neonatal sepsis is a major cause of childhood mortality. Limited diagnostic tools and mechanistic insights have hampered our abilities to develop prophylactic or therapeutic interventions. Biomarkers in human neonatal sepsis have been repeatedly identified as associated with dysregulation of angiopoietin signaling and altered arachidonic acid metabolism. We here provide the mechanistic evidence in support of the relevance for these observations. Angiopoetin-1 (Ang-1), which promotes vascular integrity, was decreased in blood plasma of human and murine septic newborns. In preclinical models, administration of Ang-1 provided prophylactic protection from septic death. Arachidonic acid metabolism appears to be functionally connected to Ang-1 via reactive oxygen species (ROS) with a direct role of nitric oxide (NO). Strengthening this intersection via oral administration of arachidonic acid and/or the NO donor L-arginine provided prophylactic as well as therapeutic protection from septic death while also increasing plasma Ang-1 levels among septic newborns. Our data highlight that targeting angiogenesis-associated pathways with interventions that increase Ang-1 activity directly or indirectly through ROS/eNOS provide promising avenues to prevent and/or treat severe neonatal sepsis.


Subject(s)
Angiopoietin-1 , Neonatal Sepsis , Nitric Oxide , Reactive Oxygen Species , Humans , Animals , Infant, Newborn , Angiopoietin-1/blood , Angiopoietin-1/metabolism , Mice , Reactive Oxygen Species/metabolism , Nitric Oxide/metabolism , Nitric Oxide/blood , Arachidonic Acid/metabolism , Arachidonic Acid/blood , Female , Male , Arginine/blood , Arginine/metabolism , Signal Transduction , Nitric Oxide Synthase Type III/metabolism , Neovascularization, Pathologic/metabolism , Biomarkers/blood , Disease Models, Animal , Animals, Newborn , Angiogenesis
10.
Aging (Albany NY) ; 15(5): 1237-1256, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36842089

ABSTRACT

Radiation-induced fibrosis is a common side effect of radiotherapy, which is the most common treatment for cancer. However, radiation also causes p53-mediated cell cycle arrest, prolonged expression of p21, and the development of senescence in normal cells that reside in irradiated tissues. Bone marrow-derived mesenchymal stem cells (MSCs) accumulate in primary tumor sites because of their natural tropism for inflammatory and fibrotic tissues. MSCs are extremely sensitive to low doses of ionizing radiation and acquire senescence as a result of bystander radiation effects. Senescent cells remain metabolically active but develop a potent senescence-associated secretory phenotype (SASP) that correlates to hyperactive secretion of cytokines, pro-fibrotic growth factors, and exosomes (EXOs). Integrative pathway analysis highlighted that radiation-induced senescence significantly enriched cell-cycle, extracellular matrix, transforming growth factor-ß (TGF-ß) signaling, and vesicle-mediated transport genes in MSCs. EXOs are cell-secreted nanovesicles (a subclass of small extracellular vesicles) that contain biomaterials-proteins, RNAs, microRNAs (miRNAs)-that are critical in cell-cell communication. miRNA content analysis of secreted EXOs further revealed that radiation-induced senescence uniquely altered miRNA profiles. In fact, several of the standout miRNAs directly targeted TGF-ß or downstream genes. To examine bystander effects of radiation-induced senescence, we further treated normal MSCs with senescence-associated EXOs (SA-EXOs). These modulated genes related to TGF-ß pathway and elevated both alpha smooth muscle actin (protein increased in senescent, activated cells) and Ki-67 (proliferative marker) expression in SA-EXO treated MSCs compared to untreated MSCs. We revealed SA-EXOs possess unique miRNA content that influence myofibroblast phenotypes via TGF-ß pathway activation. This highlights that SA-EXOs are potent SASP factors that play a large role in cancer-related fibrosis.


Subject(s)
Exosomes , Extracellular Vesicles , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Exosomes/metabolism , Extracellular Vesicles/metabolism , Fibrosis , Transforming Growth Factor beta/metabolism
11.
EBioMedicine ; 88: 104429, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36628845

ABSTRACT

Novel therapeutics to manage bacterial infections are urgently needed as the impact and prevalence of antimicrobial resistance (AMR) grows. Antivirulence therapeutics are an alternative approach to antibiotics that aim to attenuate virulence rather than target bacterial essential functions, while minimizing microbiota perturbation and the risk of AMR development. Beyond known virulence factors, pathogen-associated genes (PAGs; genes found only in pathogens to date) may play an important role in virulence or host association. Many identified PAGs encode uncharacterized hypothetical proteins and represent an untapped wealth of novel drug targets. Here, we review current advances in antivirulence drug research and development, including PAG identification, and provide a comprehensive workflow from the discovery of antivirulence drug targets to drug discovery. We highlight the importance of integrating bioinformatic/genomic-based methods for novel virulence factor discovery, coupled with experimental characterization, into existing drug screening platforms to develop novel and effective antivirulence drugs.


Subject(s)
Anti-Bacterial Agents , Virulence Factors , Humans , Workflow , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Virulence/genetics , Virulence Factors/genetics , Genetic Association Studies
12.
Trends Parasitol ; 39(1): 53-69, 2023 01.
Article in English | MEDLINE | ID: mdl-36400674

ABSTRACT

Tick-borne diseases (TBDs) are a growing global health concern. Despite extensive studies, ill-defined tick-associated pathologies remain with unknown aetiologies. Human immunological responses after tick bite, and inter-individual variations of immune-response phenotypes, are not well characterised. Current reductive experimental methodologies limit our understanding of more complex tick-associated illness, which results from the interactions between the host, tick, and microbes. An unbiased, systems-level integration of clinical metadata and biological host data - obtained via transcriptomics, proteomics, and metabolomics - offers to drive the data-informed generation of testable hypotheses in TBDs. Advanced computational tools have rendered meaningful analysis of such large data sets feasible. This review highlights the advantages of integrative system biology approaches as essential for understanding the complex pathobiology of TBDs.


Subject(s)
Tick-Borne Diseases , Ticks , Animals , Humans , Systems Biology , Ticks/genetics , Global Health , Metabolomics
13.
Cancers (Basel) ; 15(12)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37370796

ABSTRACT

Metastatic progression of epithelial ovarian cancer (EOC) involves the partial epithelial-to-mesenchymal transition (EMT) of cancer cells in the primary tumor and dissemination into peritoneal fluid. In part to the high degree of heterogeneity in EOC cells, the identification of EMT in highly epithelial cells in response to differences in matrix mechanics, growth factor signaling, and tissue hypoxia is very difficult. We analyzed different degrees of EMT by tracking changes in cell and nuclear morphology, along with the organization of cytoskeletal proteins. In our analysis, we see a small percentage of individual cells that show dramatic response to TGF-ß1 and hypoxia treatment. We demonstrate that EOC cells are spatially aware of their surroundings, with a subpopulation of EOC cells at the periphery of a cell cluster in 2D environments exhibited a greater degree of EMT. These peripheral cancer cells underwent partial EMT, displaying a hybrid of mesenchymal and epithelial characteristics, which often included less cortical actin and more perinuclear cytokeratin expression. Collectively, these data show that tumor-promoting microenvironment conditions can mediate invasive cell behavior in a spatially regulated context in a small subpopulation of highly epithelial clustered cancer cells that maintain epithelial characteristics while also acquiring some mesenchymal traits through partial EMT.

14.
Front Immunol ; 14: 1167917, 2023.
Article in English | MEDLINE | ID: mdl-37090709

ABSTRACT

Introduction: Severe COVID-19 and non-COVID-19 pulmonary sepsis share pathophysiological, immunological, and clinical features. To what extent they share mechanistically-based gene expression trajectories throughout hospitalization was unknown. Our objective was to compare gene expression trajectories between severe COVID-19 patients and contemporaneous non-COVID-19 severe sepsis patients in the intensive care unit (ICU). Methods: In this prospective single-center observational cohort study, whole blood was drawn from 20 COVID-19 patients and 22 non-COVID-19 adult sepsis patients at two timepoints: ICU admission and approximately a week later. RNA-Seq was performed on whole blood to identify differentially expressed genes and significantly enriched pathways. Results: At ICU admission, despite COVID-19 patients being almost clinically indistinguishable from non-COVID-19 sepsis patients, COVID-19 patients had 1,215 differentially expressed genes compared to non-COVID-19 sepsis patients. After one week in the ICU, the number of differentially expressed genes dropped to just 9 genes. This drop coincided with decreased expression of antiviral genes and relatively increased expression of heme metabolism genes over time in COVID-19 patients, eventually reaching expression levels seen in non-COVID-19 sepsis patients. Both groups also had similar underlying immune dysfunction, with upregulation of immune processes such as "Interleukin-1 signaling" and "Interleukin-6/JAK/STAT3 signaling" throughout disease compared to healthy controls. Discussion: Early on, COVID-19 patients had elevated antiviral responses and suppressed heme metabolism processes compared to non-COVID-19 severe sepsis patients, although both had similar underlying immune dysfunction. However, after one week in the ICU, these diseases became indistinguishable on a gene expression level. These findings highlight the importance of early antiviral treatment for COVID-19, the potential for heme-related therapeutics, and consideration of immunomodulatory therapies for both diseases to treat shared immune dysfunction.


Subject(s)
COVID-19 , Sepsis , Adult , Humans , Prospective Studies , COVID-19/genetics , Sepsis/genetics , Intensive Care Units , Antiviral Agents
15.
Sci Rep ; 13(1): 1247, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36690713

ABSTRACT

Severely-afflicted COVID-19 patients can exhibit disease manifestations representative of sepsis, including acute respiratory distress syndrome and multiple organ failure. We hypothesized that diagnostic tools used in managing all-cause sepsis, such as clinical criteria, biomarkers, and gene expression signatures, should extend to COVID-19 patients. Here we analyzed the whole blood transcriptome of 124 early (1-5 days post-hospital admission) and late (6-20 days post-admission) sampled patients with confirmed COVID-19 infections from hospitals in Quebec, Canada. Mechanisms associated with COVID-19 severity were identified between severity groups (ranging from mild disease to the requirement for mechanical ventilation and mortality), and established sepsis signatures were assessed for dysregulation. Specifically, gene expression signatures representing pathophysiological events, namely cellular reprogramming, organ dysfunction, and mortality, were significantly enriched and predictive of severity and lethality in COVID-19 patients. Mechanistic endotypes reflective of distinct sepsis aetiologies and therapeutic opportunities were also identified in subsets of patients, enabling prediction of potentially-effective repurposed drugs. The expression of sepsis gene expression signatures in severely-afflicted COVID-19 patients indicates that these patients should be classified as having severe sepsis. Accordingly, in severe COVID-19 patients, these signatures should be strongly considered for the mechanistic characterization, diagnosis, and guidance of treatment using repurposed drugs.


Subject(s)
COVID-19 , Sepsis , Humans , COVID-19/complications , Transcriptome , Biomarkers , Multiple Organ Failure
16.
Front Immunol ; 14: 1254873, 2023.
Article in English | MEDLINE | ID: mdl-37822940

ABSTRACT

Introduction: Severe COVID-19 and non-COVID-19 pulmonary sepsis share pathophysiological, immunological, and clinical features, suggesting that severe COVID-19 is a form of viral sepsis. Our objective was to identify shared gene expression trajectories strongly associated with eventual mortality between severe COVID-19 patients and contemporaneous non-COVID-19 sepsis patients in the intensive care unit (ICU) for potential therapeutic implications. Methods: Whole blood was drawn from 20 COVID-19 patients and 22 non-COVID-19 adult sepsis patients at two timepoints: ICU admission and approximately a week later. RNA-Seq was performed on whole blood to identify differentially expressed genes and significantly enriched pathways. Using systems biology methods, drug candidates targeting key genes in the pathophysiology of COVID-19 and sepsis were identified. Results: When compared to survivors, non-survivors (irrespective of COVID-19 status) had 3.6-fold more "persistent" genes (genes that stayed up/downregulated at both timepoints) (4,289 vs. 1,186 genes); these included persistently downregulated genes in T-cell signaling and persistently upregulated genes in select innate immune and metabolic pathways, indicating unresolved immune dysfunction in non-survivors, while resolution of these processes occurred in survivors. These findings of persistence were further confirmed using two publicly available datasets of COVID-19 and sepsis patients. Systems biology methods identified multiple immunomodulatory drug candidates that could target this persistent immune dysfunction, which could be repurposed for possible therapeutic use in both COVID-19 and sepsis. Discussion: Transcriptional evidence of persistent immune dysfunction was associated with 28-day mortality in both COVID-19 and non-COVID-19 septic patients. These findings highlight the opportunity for mitigating common mechanisms of immune dysfunction with immunomodulatory therapies for both diseases.


Subject(s)
COVID-19 , Sepsis , Adult , Humans , Intensive Care Units , Viremia
17.
Front Immunol ; 14: 1243689, 2023.
Article in English | MEDLINE | ID: mdl-37680625

ABSTRACT

Introduction: Persistent symptoms after COVID-19 infection ("long COVID") negatively affects almost half of COVID-19 survivors. Despite its prevalence, its pathophysiology is poorly understood, with multiple host systems likely affected. Here, we followed patients from hospital to discharge and used a systems-biology approach to identify mechanisms of long COVID. Methods: RNA-seq was performed on whole blood collected early in hospital and 4-12 weeks after discharge from 24 adult COVID-19 patients (10 reported post-COVID symptoms after discharge). Differential gene expression analysis, pathway enrichment, and machine learning methods were used to identify underlying mechanisms for post-COVID symptom development. Results: Compared to patients with post-COVID symptoms, patients without post-COVID symptoms had larger temporal gene expression changes associated with downregulation of inflammatory and coagulation genes over time. Patients could also be separated into three patient endotypes with differing mechanistic trajectories, which was validated in another published patient cohort. The "Resolved" endotype (lowest rate of post-COVID symptoms) had robust inflammatory and hemostatic responses in hospital that resolved after discharge. Conversely, the inflammatory/hemostatic responses of "Suppressive" and "Unresolved" endotypes (higher rates of patients with post-COVID symptoms) were persistently dampened and activated, respectively. These endotypes were accurately defined by specific blood gene expression signatures (6-7 genes) for potential clinical stratification. Discussion: This study allowed analysis of long COVID whole blood transcriptomics trajectories while accounting for the issue of patient heterogeneity. Two of the three identified and externally validated endotypes ("Unresolved" and "Suppressive") were associated with higher rates of post-COVID symptoms and either persistently activated or suppressed inflammation and coagulation processes. Gene biomarkers in blood could potentially be used clinically to stratify patients into different endotypes, paving the way for personalized long COVID treatment.


Subject(s)
Body Fluids , COVID-19 , Hemostatics , Adult , Humans , Blood Coagulation , Down-Regulation , Post-Acute COVID-19 Syndrome
18.
Cancers (Basel) ; 14(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35326569

ABSTRACT

High-grade serous ovarian cancer (HGSOC) constitutes the majority of all ovarian cancer cases and has staggering rates of both refractory and recurrent disease. While most patients respond to the initial treatment with paclitaxel and platinum-based drugs, up to 25% do not, and of the remaining that do, 75% experience disease recurrence within the subsequent two years. Intrinsic resistance in refractory cases is driven by environmental stressors like tumor hypoxia which alter the tumor microenvironment to promote cancer progression and resistance to anticancer drugs. Recurrent disease describes the acquisition of chemoresistance whereby cancer cells survive the initial exposure to chemotherapy and develop adaptations to enhance their chances of surviving subsequent treatments. Of the environmental stressors cancer cells endure, exposure to hypoxia has been identified as a potent trigger and priming agent for the development of chemoresistance. Both in the presence of the stress of hypoxia or the therapeutic stress of chemotherapy, cancer cells manage to cope and develop adaptations which prime populations to survive in future stress. One adaptation is the modification in the secretome. Chemoresistance is associated with translational reprogramming for increased protein synthesis, ribosome biogenesis, and vesicle trafficking. This leads to increased production of soluble proteins and extracellular vesicles (EVs) involved in autocrine and paracrine signaling processes. Numerous studies have demonstrated that these factors are largely altered between the secretomes of chemosensitive and chemoresistant patients. Such factors include cytokines, growth factors, EVs, and EV-encapsulated microRNAs (miRNAs), which serve to induce invasive molecular, biophysical, and chemoresistant phenotypes in neighboring normal and cancer cells. This review examines the modifications in the secretome of distinct chemoresistant ovarian cancer cell populations and specific secreted factors, which may serve as candidate biomarkers for aggressive and chemoresistant cancers.

19.
Sci Rep ; 12(1): 11546, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35798756

ABSTRACT

The COVID-19 pandemic motivated research on antiviral filtration used in personal protective equipment and HVAC systems. In this research, three coating compositions of NaCl, Tween 20 surfactant, and NaCl-Tween 20 were examined on polypropylene spun-bond filters. The pressure drop, coverage, and crystal size of the coating methods and compositions were measured. Also, in vitro plaque assays of the Phi6 Bacteriophage on Pseudomonas syringae as a simulation of an enveloped respiratory virus was performed to investigate the antiviral properties of the coating. NaCl and NaCl-Tween 20 increased the pressure drop in the range of 40-50 Pa for a loading of 5 mg/cm2. Tween 20 has shown an impact on the pressure drop as low as 10 Pa and made the filter surface more hydrophilic which kept the virus droplets on the surface. The NaCl-Tween 20 coated samples could inactivate 108 plaque forming units (PFU) of virus in two hours of incubation. Tween 20 coated filters with loading as low as 0.2 mg/cm2 reduced the activity of 108 PFU of virus from 109 to 102 PFU/mL after 2 h of incubation. NaCl-coated samples with a salt loading of 15 mg/cm2 could not have antiviral properties higher than reducing the viral activity from 109 to 105 PFU/mL in 4 h of incubation.


Subject(s)
Antiviral Agents , Polysorbates , SARS-CoV-2 , Sodium Chloride , Surface-Active Agents , Antiviral Agents/pharmacology , Lipoproteins , Polysorbates/chemistry , Polysorbates/pharmacology , Prospective Studies , RNA, Viral , SARS-CoV-2/drug effects , Sodium Chloride/pharmacology , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology
20.
Front Microbiol ; 13: 1021021, 2022.
Article in English | MEDLINE | ID: mdl-36312952

ABSTRACT

Biofilms are the most common cause of bacterial infections in humans and notoriously hard to treat due to their ability to withstand antibiotics and host immune defenses. To overcome the current lack of effective antibiofilm therapies and guide future design, the identification of novel biofilm-specific gene targets is crucial. In this regard, transcriptional regulators have been proposed as promising targets for antimicrobial drug design. Therefore, a Transposon insertion sequencing approach was employed to systematically identify regulators phenotypically affecting biofilm growth in Pseudomonas aeruginosa PA14 using the TnSeq analysis tools Bio-TraDIS and TRANSIT. A screen of a pool of 300,000 transposon insertion mutants identified 349 genes involved in biofilm growth on hydroxyapatite, including 47 regulators. Detection of 19 regulatory genes participating in well-established biofilm pathways validated the results. An additional 28 novel prospective biofilm regulators suggested the requirement for multiple one-component transcriptional regulators. Biofilm-defective phenotypes were confirmed for five one-component transcriptional regulators and a protein kinase, which did not affect motility phenotypes. The one-component transcriptional regulator bosR displayed a conserved role in P. aeruginosa biofilm growth since its ortholog in P. aeruginosa strain PAO1 was also required for biofilm growth. Microscopic analysis of a chromosomal deletion mutant of bosR confirmed the role of this regulator in biofilm growth. Overall, our results highlighted that the gene network driving biofilm growth is complex and involves regulators beyond the primarily studied groups of two-component systems and cyclic diguanylate signaling proteins. Furthermore, biofilm-specific regulators, such as bosR, might constitute prospective new drug targets to overcome biofilm infections.

SELECTION OF CITATIONS
SEARCH DETAIL