ABSTRACT
BACKGROUND: Optimal positioning of the left ventricular (LV) lead is an important determinant of cardiac resynchronization therapy (CRT) response. OBJECTIVE: Evaluate the feasibility of intraprocedural integration of cardiac computed tomography (CT) to guide LV lead implantation for CRT upgrades. METHODS: Patients undergoing LV lead upgrade underwent ECG-gated cardiac CT dyssynchrony and LV scar assessment. Target American Heart Association segment selection was determined using latest non-scarred mechanically activating segments overlaid onto real-time fluoroscopy with image co-registration to guide optimal LV lead implantation. Hemodynamic validation was performed using a pressure wire in the LV cavity (dP/dtmax) ). RESULTS: 18 patients (male 94%, 55.6% ischemic cardiomyopathy) with RV pacing burden 60.0 ± 43.7% and mean QRS duration 154 ± 30 ms underwent cardiac CT. 10/10 ischemic patients had CT evidence of scar and these segments were excluded as targets. Seventeen out of 18 (94%) patients underwent successful LV lead implantation with delivery to the CT target segment in 15 out of 18 (83%) of patients. Acute hemodynamic response (dP/dtmax ≥ 10%) was superior with LV stimulation in CT target versus nontarget segments (83.3% vs. 25.0%; p = .012). Reverse remodeling at 6 months (LV end-systolic volume improvement ≥15%) occurred in 60% of subjects (4/8 [50.0%] ischemic cardiomyopathy vs. 5/7 [71.4%] nonischemic cardiomyopathy, p = .608). CONCLUSION: Intraprocedural integration of cardiac CT to guide optimal LV lead placement is feasible with superior hemodynamics when pacing in CT target segments and favorable volumetric response rates, despite a high proportion of patients with ischemic cardiomyopathy. Multicentre, randomized controlled studies are needed to evaluate whether intraprocedural integration of cardiac CT is superior to standard care.
Subject(s)
Cardiac Resynchronization Therapy , Heart Failure , Feasibility Studies , Heart Failure/diagnostic imaging , Heart Failure/therapy , Heart Ventricles/diagnostic imaging , Heart Ventricles/surgery , Humans , Male , Tomography , Tomography, X-Ray Computed , Treatment OutcomeABSTRACT
Cardiac resynchronization therapy (CRT) is an important treatment for heart failure. Low female enrollment in clinical trials means that current CRT guidelines may be biased toward males. However, females have higher response rates at lower QRS duration (QRSd) thresholds. Sex differences in the left ventricle (LV) size could provide an explanation for the improved female response at lower QRSd. We aimed to test if sex differences in CRT response at lower QRSd thresholds are explained by differences in LV size and hence predict sex-specific guidelines for CRT. We investigated the effect that LV size sex difference has on QRSd between male and females in 1093 healthy individuals and 50 CRT patients using electrophysiological computer models of the heart. Simulations on the healthy mean shape models show that LV size sex difference can account for 50-100% of the sex difference in baseline QRSd in healthy individuals. In the CRT patient cohort, model simulations predicted female-specific guidelines for CRT, which were 9-13 ms lower than current guidelines. Sex differences in the LV size are able to account for a significant proportion of the sex difference in QRSd and provide a mechanistic explanation for the sex difference in CRT response. Simulations accounting for the smaller LV size in female CRT patients predict 9-13 ms lower QRSd thresholds for female CRT guidelines.
Subject(s)
Cardiac Resynchronization Therapy , Computer Simulation , Practice Guidelines as Topic , Sex Characteristics , Aged , Female , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Humans , Male , Organ SizeABSTRACT
BACKGROUND: Cardiac anatomy and function adapt in response to chronic cardiac resynchronization therapy (CRT). The effects of these changes on the optimal left ventricle (LV) lead location and timing delay settings have yet to be fully explored. OBJECTIVE: To predict the effects of chronic CRT on the optimal LV lead location and device timing settings over time. METHODS: Biophysical computational cardiac models were generated for 3 patients, immediately post-implant (ACUTE) and after at least 6 months of CRT (CHRONIC). Optimal LV pacing area and device settings were predicted by pacing the ACUTE and CHRONIC models across the LV epicardium (49 sites each) with a range of 9 pacing settings and simulating the acute hemodynamic response (AHR) of the heart. RESULTS: There were statistically significant differences between the distribution of the AHR in the ACUTE and CHRONIC models (P < 0.0005 in all cases). The site delivering the maximal AHR shifted location between the ACUTE and CHRONIC models but provided a negligible improvement (<2%). The majority of the acute optimal LV pacing regions (76-100%) and device settings (76-91%) remained optimal chronically. CONCLUSION: Optimization of the LV pacing location and device settings were important at the time of implant, with a reduced benefit over time, where the majority of the acute optimal LV pacing region and device settings remained optimal with chronic CRT.
Subject(s)
Cardiac Resynchronization Therapy/methods , Heart Failure/therapy , Models, Cardiovascular , Patient-Specific Modeling , Ventricular Function, Left , Action Potentials , Aged , Epicardial Mapping , Heart Failure/diagnosis , Heart Failure/physiopathology , Heart Rate , Humans , Male , Middle Aged , Time Factors , Treatment OutcomeABSTRACT
Bradycardia is a risk factor for arrhythmia in several disorders, including acquired long QT syndrome, whereby slowing of heart rate facilitates ectopic activity and torsade de pointes. Slowing of rate is associated with an increase in the spatiotemporal dispersion of ventricular repolarisation (DOR) in electrically paced hearts. However, there have been conflicting reports on the effect of the vagus nerve, which mediates the physiological slowing of heart rate, on DOR. The aim of this study was to investigate the effect of vagus nerve stimulation (VNS) on the heterogeneity of ventricular repolarisation, as assessed using the T-wave peak-to-end interval (TpTe) and monophasic action potentials (MAPs), in normal hearts and in hearts with acquired long QT syndrome. Experiments were conducted in an isolated innervated rabbit heart preparation. The effect of VNS on cardiac electrograms, MAPs and ventricular function was investigated in control and following perfusion of E4031 (50nmol/L); an inhibitor of the rapid delayed rectifying potassium current. VNS was associated with a stimulation frequency-dependent bradycardia (-74±6 [10Hz] vs. -25±4bpm [2Hz], P<0.05). VNS prolonged the TpTe interval (29±1 vs. 20±2ms, P<0.05) and increased T-wave amplitude (1.7±0.3 vs. 0.7±0.2mV, P<0.05) in association with increased apicobasal DOR. The effects of VNS were exacerbated by E4031, with a greater prolongation of TpTe (ΔTpTe 42±6 vs. 8±1ms, P<0.05) and max-min apicobasal time of repolarisation (TRepol; 45±11 vs. 5±2ms, P<0.05). ΔTpTe was strongly correlated with the Δmax-minTRepol (r(2)=0.87, P<0.05) and TpTe was prolonged to a greater degree in hearts exhibiting spontaneous ventricular tachyarrhythmia. Rate dependent differences in regional action potential prolongation were replicated using computational models. These data demonstrate that VNS increases ventricular DOR and that the effects of the vagus nerve on ventricular electrophysiology are exacerbated in pharmacologically acquired long QT syndrome.
Subject(s)
Vagus Nerve/physiopathology , Action Potentials , Animals , Electric Stimulation , Long QT Syndrome/physiopathology , Rabbits , Vagus Nerve Stimulation , Ventricular Fibrillation/physiopathology , Ventricular PressureSubject(s)
Cardiac Resynchronization Therapy , Endocardium , Cardiac Pacing, Artificial , Humans , PerfusionABSTRACT
Background: A reduced left atrial (LA) strain correlates with the presence of atrial fibrillation (AF). Conventional atrial strain analysis uses two-dimensional (2D) imaging, which is, however, limited by atrial foreshortening and an underestimation of through-plane motion. Retrospective gated computed tomography (RGCT) produces high-fidelity three-dimensional (3D) images of the cardiac anatomy throughout the cardiac cycle that can be used for estimating 3D mechanics. Its feasibility for LA strain measurement, however, is understudied. Aim: The aim of this study is to develop and apply a novel workflow to estimate 3D LA motion and calculate the strain from RGCT imaging. The utility of global and regional strains to separate heart failure in patients with reduced ejection fraction (HFrEF) with and without AF is investigated. Methods: A cohort of 30 HFrEF patients with (n = 9) and without (n = 21) AF underwent RGCT prior to cardiac resynchronisation therapy. The temporal sparse free form deformation image registration method was optimised for LA feature tracking in RGCT images and used to estimate 3D LA endocardial motion. The area and fibre reservoir strains were calculated over the LA body. Universal atrial coordinates and a human atrial fibre atlas enabled the regional strain calculation and the fibre strain calculation along the local myofibre orientation, respectively. Results: It was found that global reservoir strains were significantly reduced in the HFrEF + AF group patients compared with the HFrEF-only group patients (area strain: 11.2 ± 4.8% vs. 25.3 ± 12.6%, P = 0.001; fibre strain: 4.5 ± 2.0% vs. 15.2 ± 8.8%, P = 0.001), with HFrEF + AF patients having a greater regional reservoir strain dyssynchrony. All regional reservoir strains were reduced in the HFrEF + AF patient group, in whom the inferior wall strains exhibited the most significant differences. The global reservoir fibre strain and LA volume + posterior wall reservoir fibre strain exceeded LA volume alone and 2D global longitudinal strain (GLS) for AF classification (area-under-the-curve: global reservoir fibre strain: 0.94 ± 0.02, LA volume + posterior wall reservoir fibre strain: 0.95 ± 0.02, LA volume: 0.89 ± 0.03, 2D GLS: 0.90 ± 0.03). Conclusion: RGCT enables 3D LA motion estimation and strain calculation that outperforms 2D strain metrics and LA enlargement for AF classification. Differences in regional LA strain could reflect regional myocardial properties such as atrial fibrosis burden.
ABSTRACT
BACKGROUND: The WiSE-CRT System (EBR systems, Sunnyvale, CA) permits leadless left ventricular pacing. Currently, no intraprocedural guidance is used to target optimal electrode placement while simultaneously guiding acoustic transmitter placement in close proximity to the electrode to ensure adequate power delivery. OBJECTIVE: The purpose of this study was to assess the use of computed tomography (CT) anatomy, dynamic perfusion and mechanics, and predicted activation pattern to identify both the optimal electrode and transmitter locations. METHODS: A novel CT protocol was developed using preprocedural imaging and simulation to identify target segments (TSs) for electrode implantation, with late electrical and mechanical activation, with ≥5 mm wall thickness without perfusion defects. Modeling of the acoustic intensity from different transmitter implantation sites to the TSs was used to identify the optimal transmitter location. During implantation, TSs were overlaid on fluoroscopy to guide optimal electrode location that were evaluated by acute hemodynamic response (AHR) by measuring the maximal rate of left ventricular pressure rise with biventricular pacing. RESULTS: Ten patients underwent the implantation procedure. The transmitter could be implanted within the recommended site on the basis of preprocedural analysis in all patients. CT identified a mean of 4.8 ± 3.5 segments per patient with wall thickness < 5 mm. During electrode implantation, biventricular pacing within TSs resulted in a significant improvement in AHR vs non-TSs (25.5% ± 8.8% vs 12.9% ± 8.6%; P < .001). Pacing in CT-identified scar resulted in either failure to capture or minimal AHR improvement. The electrode was targeted to the TSs in all patients and was implanted in the TSs in 80%. CONCLUSION: Preprocedural imaging and modeling data with intraprocedural guidance can successfully guide WiSE-CRT electrode and transmitter implantation to allow optimal AHR and adequate power delivery.
Subject(s)
Cardiac Resynchronization Therapy , Heart Failure , Humans , Cardiac Resynchronization Therapy Devices , Heart Failure/therapy , Cardiac Resynchronization Therapy/methods , Electrodes , Tomography, X-Ray Computed , Perfusion , Treatment Outcome , Heart Ventricles/diagnostic imagingABSTRACT
Lead position is an important factor in determining response to Cardiac Resynchronization Therapy (CRT) in dyssynchronous heart failure (HF) patients. Multipoint pacing (MPP) enables pacing from multiple electrodes within the same lead, improving the potential outcome for patients. Virtual quadripolar lead designs were evaluated by simulating pacing from all combinations of 1 and 2 electrodes along the lead in each virtual patient from cohorts of HF (n = 24) and simulated reverse remodelled (RR, n = 20) patients. Electrical synchrony was assessed by the time 90% of the ventricular myocardium is activated (AT090). Optimal 1 and 2 electrode pacing configurations for AT090 were combined to identify the 4-electrode lead design that maximised benefits across all patients. LV pacing in the HF cohort in all possible single and double electrode locations reduced AT090 by 14.48 ± 5.01 ms (11.92 ± 3.51%). The major determinant of reduction in activation time was patient anatomy. Pacing with a single optimal lead design reduced AT090 more in the HF cohort than the RR cohort (12.68 ± 3.29% vs 10.81 ± 2.34%). Pacing with a single combined HF and RR population-optimised lead design achieves electrical resynchronization with near equivalence to personalised lead designs both in HF and RR anatomies. These findings suggest that although lead configurations have to be tailored to each patient, a single optimal lead design is sufficient to obtain near-optimal results across most patients. This study shows the potential of virtual clinical trials as tools to compare existing and explore new lead designs.
ABSTRACT
For over 100 years cardiac electrophysiology has been measured in the clinic. The electrical signals that can be measured span from noninvasive ECG and body surface potentials measurements through to detailed invasive measurements of local tissue electrophysiology. These electrophysiological measurements form a crucial component of patient diagnosis and monitoring; however, it remains challenging to quantitatively link changes in clinical electrophysiology measurements to biophysical cellular function. Multi-scale biophysical computational models represent one solution to this problem. These models provide a formal framework for linking cellular function through to emergent whole organ function and routine clinical diagnostic signals. In this review, we describe recent work on the use of computational models to interpret clinical electrophysiology signals. We review the simulation of human cardiac myocyte electrophysiology in the atria and the ventricles and how these models are being used to link organ scale function to patient disease mechanisms and therapy response in patients receiving implanted defibrillators, \cardiac resynchronisation therapy or suffering from atrial fibrillation and ventricular tachycardia. There is a growing use of multi-scale biophysical models to interpret clinical data. This allows cardiologists to link clinical observations with cellular mechanisms to better understand cardiopathophysiology and identify novel treatment strategies. This article is categorized under: Cardiovascular Diseases > Computational Models Cardiovascular Diseases > Biomedical Engineering Cardiovascular Diseases > Molecular and Cellular Physiology.
Subject(s)
Atrial Fibrillation , Heart Atria , Electrophysiological Phenomena , Heart Ventricles , Humans , Myocytes, CardiacABSTRACT
BACKGROUND: Left bundle branch area pacing (LBBAP) is a novel form of conduction system pacing which can reverse left bundle branch block and deliver cardiac resynchronization therapy (CRT). The WiSE-CRT system delivers leadless endocardial pacing with symptomatic and left ventricular (LV) remodelling improvements following intervention. We report the technical feasibility of delivering leadless LBBAP using the WiSE-CRT system. CASE SUMMARY: In Case 1, a 57-year-old male with ischaemic cardiomyopathy and complete heart block underwent implantation of the WiSE-CRT system, using a retrograde transaortic approach, after failed conventional CRT. Temporary left bundle stimulation from the LV septum achieved superior electrical resynchronization and equivalent haemodynamic response compared to endocardial pacing at the lateral LV wall. In Case 2, an 82-year-old gentleman with tachyarrhythmia-induced cardiomyopathy underwent WiSE-CRT implantation via a trans-septal inter-atrial approach, with the endocardial electrode successfully deployed in the LV septum. DISCUSSION: Here we report the first case of deployment of the WiSE-CRT endocardial electrode in the LV septum and demonstrate the technical feasibility of leadless LBBAP. Entirely leadless CRT is an attractive option for patients with venous access issues or recurrent lead complications and has previously been successful using the WiSE-CRT system and a leadless pacemaker in the right ventricle. Further studies are required to assess long-term efficacy and safety of leadless LBBAP.
ABSTRACT
BACKGROUND: Cardiac Resynchronization Therapy (CRT) in dyssynchronous heart failure patients is ineffective in 20-30% of cases. Sub-optimal left ventricular (LV) pacing location can lead to non-response, thus there is interest in LV lead location optimization. Invasive acute haemodynamic response (AHR) measurements have been used to optimize the LV pacing location during CRT implantation. In this manuscript, we aim to predict the optimal lead location (AHR>10%) with non-invasive computed tomography (CT) based measures of cardiac anatomical and mechanical properties, and simulated electrical activation times. METHODS: Non-invasive measurements from CT images and ECG were acquired from 34 patients indicated for CRT upgrade. The LV lead was implanted and AHR was measured at different pacing sites. Computer models of the ventricles were used to simulate the electrical activation of the heart, track the mechanical motion throughout the cardiac cycle and measure the wall thickness of the LV on a patient specific basis. RESULTS: We tested the ability of electrical, mechanical and anatomical indices to predict the optimal LV location. Electrical (RV-LV delay) and mechanical (time to peak contraction) indices were correlated with an improved AHR, while wall thickness was not predictive. A logistic regression model combining RV-LV delay and time to peak contraction was able to predict positive response with 70 ± 11% accuracy and AUROC curve of 0.73. CONCLUSION: Non-invasive electrical and mechanical indices can predict optimal epicardial lead location. Prospective analysis of these indices could allow clinicians to test the AHR at fewer pacing sites and reduce time, costs and risks to patients.
Subject(s)
Cardiac Resynchronization Therapy , Heart Failure , Heart Failure/diagnostic imaging , Heart Failure/therapy , Heart Ventricles/diagnostic imaging , Humans , Treatment Outcome , Ventricular Function, LeftABSTRACT
Personalised medicine is based on the principle that each body is unique and will respond to therapies differently. In cardiology, characterising patient specific cardiovascular properties would help in personalising care. One promising approach for characterising these properties relies on performing computational analysis of multimodal imaging data. An interactive cardiac imaging environment, which can seamlessly render, manipulate, derive calculations, and otherwise prototype research activities, is therefore sought-after. We developed the Cardiac Electro-Mechanics Research Group Application (CemrgApp) as a platform with custom image processing and computer vision toolkits for applying statistical, machine learning and simulation approaches to study physiology, pathology, diagnosis and treatment of the cardiovascular system. CemrgApp provides an integrated environment, where cardiac data visualisation and workflow prototyping are presented through a common graphical user interface.
ABSTRACT
BACKGROUND: His-bundle pacing (HBP) and left bundle pacing (LBP) are emerging as novel delivery methods for cardiac resynchronization therapy (CRT) in heart failure patients with left bundle branch block (LBBB). HBP and LBP have never been compared to biventricular endocardial (BiV-endo) pacing. Furthermore, there are indications of negative effects of LBP on right ventricular (RV) activation times (ATs), but these effects have not been quantified. OBJECTIVE: The purpose of this study was to compare changes in ventricular activation induced by HBP, LBP, left ventricular (LV) septal pacing, BiV-endo, and biventricular epicardial (BiV-epi) pacing using computer simulations. METHODS: We simulated ventricular activation on 24 four-chamber heart meshes inclusive of the His-Purkinje network in the presence of LBBB. We simulated BiV-epi pacing, BiV-endo pacing with left ventricular (LV) lead at the lateral wall, BiV-endo pacing with LV lead at the LV septum, HBP, and LBP. RESULTS: HBP was superior to BiV-endo and BiV-epi in terms of reduction in LV ATs and interventricular dyssynchrony (P <.05). LBP reduced LV ATs but not interventricular dyssynchrony compared to BiV-epi and BiV-endo pacing. RV latest AT was higher with LBP than with HBP (141.3 ± 10.0 ms vs 111.8 ± 10.4 ms). Optimizing AV delay during LBP reduced RV latest AT (104.7 ± 8.7 ms) and led to comparable response to HBP. In case of complete AV block, BiV-endo septal pacing was equivalent to LBP. CONCLUSION: HBP is superior to BiV-epi and BiV-endo. To achieve comparable response to HBP, AV delay optimization during LBP is required in order to reduce RV ATs.
Subject(s)
Bundle of His/physiopathology , Bundle-Branch Block/therapy , Cardiac Resynchronization Therapy/methods , Electrocardiography , Heart Ventricles/physiopathology , Ventricular Function, Left/physiology , Aged , Bundle-Branch Block/physiopathology , Cardiac Catheterization/methods , Endocardium , Female , Humans , MaleABSTRACT
Cardiac resynchronization therapy (CRT) is an effective treatment for heart failure (HF) patients with an electrical substrate pathology causing ventricular dyssynchrony. However 40-50% of patients do not respond to treatment. Cardiac modeling of the electrophysiology, electromechanics, and hemodynamics of the heart has been used to study mechanisms behind HF pathology and CRT response. Recently, multi-scale dyssynchronous HF models have been used to study optimal device settings and optimal lead locations, investigate the underlying cardiac pathophysiology, as well as investigate emerging technologies proposed to treat cardiac dyssynchrony. However the breadth of patient and experimental data required to create and parameterize these models and the computational resources required currently limits the use of these models to small patient numbers. In the future, once these technical challenges are overcome, biophysically based models of the heart have the potential to become a clinical tool to aid in the diagnosis and treatment of HF.
Subject(s)
Cardiac Resynchronization Therapy Devices , Cardiac Resynchronization Therapy , Heart Failure/diagnosis , Heart Failure/therapy , Hemodynamics , Models, Cardiovascular , Patient-Specific Modeling , Ventricular Function , Clinical Decision-Making , Equipment Design , Heart Failure/diagnostic imaging , Heart Failure/physiopathology , Humans , Patient Selection , Patient-Centered Care/methods , PrognosisABSTRACT
AIMS: The steepness of the action potential duration (APD) restitution curve and local tissue refractoriness are both thought to play important roles in arrhythmogenesis. Despite this, there has been little recognition of the apparent association between steady-state APD and the slope of the restitution curve. The objective of this study was to test the hypothesis that restitution slope is determined by APD and to examine the relationship between restitution slope, refractoriness and susceptibility to VF. METHODS AND RESULTS: Experiments were conducted in isolated hearts and ventricular myocytes from adult guinea pigs and rabbits. Restitution curves were measured under control conditions and following intervention to prolong (clofilium, veratridine, bretylium, low [Ca]e, chronic transverse aortic constriction) or shorten (catecholamines, rapid pacing) ventricular APD. Despite markedly differing mechanisms of action, all interventions that prolonged the action potential led to a steepening of the restitution curve (and vice versa). Normalizing the restitution curve as a % of steady-state APD abolished the difference in restitution curves with all interventions. Effects on restitution were preserved when APD was modulated by current injection in myocytes pre-treated with the calcium chelator BAPTA-AM - to abolish the intracellular calcium transient. The non-linear relation between APD and the rate of repolarization of the action potential is shown to underpin the common influence of APD on the slope of the restitution curve. Susceptibility to VF was found to parallel changes in APD/refractoriness, rather than restitution slope. CONCLUSION(S): Steady-state APD is the principal determinant of the slope of the ventricular electrical restitution curve. In the absence of post-repolarization refractoriness, factors that prolong the action potential would be expected to steepen the restitution curve. However, concomitant changes in tissue refractoriness act to reduce susceptibility to sustained VF. Dependence on steady-state APD may contribute to the failure of restitution slope to predict sudden cardiac death.
Subject(s)
Action Potentials/drug effects , Calcium Signaling , Calcium/metabolism , Heart Rate , Myocytes, Cardiac/metabolism , Refractory Period, Electrophysiological , Ventricular Fibrillation/metabolism , Animals , Calcium Channel Agonists/pharmacology , Calcium Chelating Agents/pharmacology , Calcium Signaling/drug effects , Cardiomegaly/metabolism , Cardiomegaly/physiopathology , Guinea Pigs , Heart Rate/drug effects , Isolated Heart Preparation , Kinetics , Male , Models, Cardiovascular , Myocytes, Cardiac/drug effects , Rabbits , Refractory Period, Electrophysiological/drug effects , Risk Factors , Ventricular Fibrillation/etiology , Ventricular Fibrillation/physiopathologyABSTRACT
BACKGROUND: Cardiac resynchronization therapy (CRT) delivered via left ventricular (LV) endocardial pacing (ENDO-CRT) is associated with improved acute hemodynamic response compared with LV epicardial pacing (EPI-CRT). The role of cardiac anatomy and physiology in this improved response remains controversial. We used computational electrophysiological models to quantify the role of cardiac geometry, tissue anisotropy, and the presence of fast endocardial conduction on myocardial activation during ENDO-CRT and EPI-CRT. METHODS AND RESULTS: Cardiac activation was simulated using the monodomain tissue excitation model in 2-dimensional (2D) canine and human and 3D canine biventricular models. The latest activation times (LATs) for LV endocardial and biventricular epicardial tissue were calculated (LVLAT and TLAT), as well the percentage decrease in LATs for endocardial (en) versus epicardial (ep) LV pacing (defined as %dLV=100×(LVLATep-LVLATen)/LVLATep and %dT=100×(TLATep-TLATen)/TLATep, respectively). Normal canine cardiac anatomy is responsible for %dLV and %dT values of 7.4% and 5.5%, respectively. Concentric and eccentric remodeled anatomies resulted in %dT values of 15.6% and 1.3%, respectively. The 3D biventricular-paced canine model resulted in %dLV and %dT values of -7.1% and 1.5%, in contrast to the experimental observations of 16% and 11%, respectively. Adding fast endocardial conduction to this model altered %dLV and %dT to 13.1% and 10.1%, respectively. CONCLUSIONS: Our results provide a physiological explanation for improved response to ENDO-CRT. We predict that patients with viable fast-conducting endocardial tissue or distal Purkinje network or both, as well as concentric remodeling, are more likely to benefit from reduced ATs and increased synchrony arising from endocardial pacing.
Subject(s)
Cardiac Resynchronization Therapy/methods , Electrophysiologic Techniques, Cardiac , Endocardium/physiopathology , Heart Failure/therapy , Heart Ventricles/physiopathology , Animals , Anisotropy , Dogs , Heart Failure/physiopathology , Hemodynamics/physiology , HumansABSTRACT
This paper presents a novel X-ray and MR image registration technique based on individual-specific biomechanical finite element (FE) models of the breasts. Information from 3D magnetic resonance (MR) images was registered to X-ray mammographic images using non-linear FE models subject to contact mechanics constraints to simulate the large compressive deformations between the two imaging modalities. A physics-based perspective ray-casting algorithm was used to generate 2D pseudo-X-ray projections of the FE-warped 3D MR images. Unknown input parameters to the FE models, such as the location and orientation of the compression plates, were optimised to provide the best match between the pseudo and clinical X-ray images. The methods were validated using images taken before and during compression of a breast-shaped phantom, for which 12 inclusions were tracked between imaging modalities. These methods were then applied to X-ray and MR images from six breast cancer patients. Error measures (such as centroid and surface distances) of segmented tumours in simulated and actual X-ray mammograms were used to assess the accuracy of the methods. Sensitivity analysis of the lesion co-localisation accuracy to rotation about the anterior-posterior axis was then performed. For 10 of the 12 X-ray mammograms, lesion localisation accuracies of 14 mm and less were achieved. This analysis on the rotation about the anterior-posterior axis indicated that, in cases where the lesion lies in the plane parallel to the mammographic compression plates, that cuts through the nipple, such rotations have relatively minor effects.This has important implications for clinical applicability of this multi-modality lesion registration technique, which will aid in the diagnosis and treatment of breast cancer.