Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Proteome Res ; 14(12): 5007-16, 2015 Dec 04.
Article in English | MEDLINE | ID: mdl-26584007

ABSTRACT

This is a report of a human proteome project (HPP) related to chromosome 9 (Chr 9). To reveal missing proteins and undiscovered features in proteogenomes, both LC-MS/MS analysis and next-generation RNA sequencing (RNA-seq)-based identification and characterization were conducted on five pairs of lung adenocarcinoma tumors and adjacent nontumor tissues. Before our previous Chromosome-Centric Human Proteome Project (C-HPP) special issue, there were 170 remaining missing proteins on Chr 9 (neXtProt 2013.09.26 rel.); 133 remain at present (neXtProt 2015.04.28 rel.). In the proteomics study, we found two missing protein candidates that require follow-up work and one unrevealed protein across all chromosomes. RNA-seq analysis detected RNA expression for four nonsynonymous (NS) single nucleotide polymorphisms (SNPs) (in CDH17, HIST1H1T, SAPCD2, and ZNF695) and three synonymous SNPs (in CDH17, CST1, and HNF1A) in all five tumor tissues but not in any of the adjacent normal tissues. By constructing a cancer patient sample-specific protein database based on individual RNA-seq data and by searching the proteomics data from the same sample, we identified four missense mutations in four genes (LTF, HDLBP, TF, and HBD). Two of these mutations were found in tumor samples but not in paired normal tissues. In summary, our proteogenomic study of human primary lung tumor tissues detected additional and revealed novel missense mutations and synonymous SNP signatures, some of which are specific to lung cancers. Data from mass spectrometry have been deposited in the ProteomeXchange with the identifier PXD002523.


Subject(s)
Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Chromosomes, Human, Pair 9 , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mutation, Missense , Polymorphism, Single Nucleotide , Adenocarcinoma of Lung , Adult , Aged , Cadherins/genetics , Cadherins/metabolism , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Peptides/analysis , Peptides/genetics , Proteome/genetics , Pseudogenes , RNA, Long Noncoding , Sequence Analysis, RNA , Tandem Mass Spectrometry
2.
BMC Med Inform Decis Mak ; 15 Suppl 1: S1, 2015.
Article in English | MEDLINE | ID: mdl-26044913

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative and progressive disorder that results in brain malfunctions. Resting-state (RS) functional magnetic resonance imaging (fMRI) techniques have been successfully applied for quantifying brain activities of both Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) patients. Region-based approaches are widely utilized to classify patients from cognitively normal subjects (CN). Nevertheless, region-based approaches have a few limitations, reproducibility owing to selection of disease-specific brain regions, and heterogeneity of brain activities during disease progression. For coping with these issues, network-based approaches have been suggested in the field of molecular bioinformatics. In comparison with individual gene-based approaches, they acquired more accurate results in diverse disease classification, and reproducibility was confirmed by replication studies. In our work, we applied a similar methodology integrating brain pathway information into pathway activity inference, and permitting classification of both aMCI and AD patients based on pathway activities rather than single region activities. RESULTS: After aggregating the 59 brain pathways from literature, we estimated brain pathway activities by using exhaustive search algorithms between patients and cognitively normal subjects, and identified discriminatory pathways according to disease progression. We used three different data sets and each data set consists of two different groups. Our results show that the pathway-based approach (AUC = 0.89, 0.9, 0.75) outperformed the region-based approach (AUC = 0.69, 0.8, 0.68). Also, our approach provided enhanced diagnostic power achieving higher accuracy, sensitivity, and specificity (pathway-based approach: accuracy = 83%; sensitivity = 86%; specificity = 78%, region-based approach: accuracy = 74%; sensitivity = 78%; specificity = 76%). CONCLUSIONS: We proposed a novel method inferring brain pathway activities for disease classification. Our approach shows better classification performance than region-based approach in four classification models. We expect that brain pathway-based approach would be helpful for precise classification of brain disorders, and provide new opportunities for uncovering disrupted brain pathways caused by disease. Moreover, discriminatory pathways between patients and cognitively normal subjects may facilitate the interpretation of functional alterations during disease progression.


Subject(s)
Alzheimer Disease/physiopathology , Cognitive Dysfunction/physiopathology , Functional Neuroimaging/methods , Magnetic Resonance Imaging/methods , Nerve Net/physiopathology , Alzheimer Disease/classification , Alzheimer Disease/diagnosis , Cognitive Dysfunction/classification , Cognitive Dysfunction/diagnosis , Humans , Neural Pathways/physiopathology
3.
Genes (Basel) ; 14(7)2023 06 27.
Article in English | MEDLINE | ID: mdl-37510259

ABSTRACT

The influences of diet and environmental factors on gut microbial profiles have been widely acknowledged; however, the specific roles of host genetics remain uncertain. To unravel host genetic effects, we raised 47 Jeju crossbred (Jeju × Thoroughbred) foals that exhibited higher genetic diversity. Foals were raised under identical environmental conditions and diets. Microbial composition revealed that Firmicutes, Bacteroidetes, and Spirochaetes were the predominant phyla. We identified 31 host-microbiome associations by utilizing 47,668 single nucleotide polymorphisms (SNPs) and 734 taxa with quantitative trait locus (QTL) information related to horse growth. The taxa involved in 31 host-microbiome associations were functionally linked to carbohydrate metabolism, energy metabolic processes, short-chain fatty acid (SCFA) production, and lactic acid production. Abundances of these taxa were affected by specific SNP genotypes. Most growth-associated SNPs are found between genes. The rs69057439 and rs69127732 SNPs are located within the introns of the VWA8 and MFSD6 genes, respectively. These genes are known to affect energy balance and metabolism. These discoveries emphasize the significant effect of host SNPs on the development of the intestinal microbiome during the initial phases of life and provide insights into the influence of gut microbial composition on horse growth.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Horses/genetics , Gastrointestinal Microbiome/genetics , Bacteria/genetics , Bacteroidetes , Genotype
4.
PLoS One ; 16(10): e0256848, 2021.
Article in English | MEDLINE | ID: mdl-34710121

ABSTRACT

In recent years, there has been a rapid increase in microbiome studies to explore microbial alterations causing disease status and unveil disease pathogenesis derived from microbiome environmental modifications. Convincing evidence of lung microbial changes involving asthma has been collected; however, whether lung microbial changes under obesity leads to severe asthma in a state of allergen exposure has not been studied sufficiently. Here, we measured bacterial alterations in the lung of an allergen mouse model induced by a high fat diet (HFD) by using 16S rRNA gene sequencing. A total of 33 pathogen­free 3­week­old male C57BL/6 mice were used, and they divided randomly into two groups. The Chow diet (n = 16) and high fat diet (n = 17) was administrated for 70 days. Mice were sensitized with PBS or Dermatophagoides pteronyssinus extract (Der.p), and concentration levels of total IgE and Der.p-IgE in the blood were measured to quantify immune responses. Although there were no meaningful differences in bacterial species richness in the HFD mouse group, momentous changes of bacterial diversity in the HFD mouse group were identified after the mouse group was exposed to allergens. At a genus level, the fluctuations of taxonomic relative abundances in several bacteria such as Ralstonia, Lactobacillus, Bradyrhizobium, Gaiella, PAC001932_g, Pseudolabrys, and Staphylococcus were conspicuously observed in the HFD mouse group exposed to allergens. Also, we predicted metabolic signatures occurring under microbial alterations in the Chow group versus the Chow group exposed to allergens, as well as in the HFD mouse group versus the HFD group exposed to allergens. We then compared their similarities and differences. Metabolic functions associated with macrophages such as propanoate metabolism, butanoate metabolism, and glycine-serine-threonine metabolism were identified in the HFD group versus the Chow group. These results provide new insights into the understanding of a microbiome community of obese allergic asthma, and shed light on the functional roles of lung microbiota inducing the pathogenesis of severe asthma.


Subject(s)
Asthma/complications , Lung/microbiology , Obesity/complications , Animals , Asthma/microbiology , Bacteria/isolation & purification , Disease Models, Animal , Male , Mice, Inbred C57BL , Microbiota , Obesity/microbiology
5.
Transl Psychiatry ; 11(1): 296, 2021 05 19.
Article in English | MEDLINE | ID: mdl-34011927

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease associated with a complex genetic etiology. Besides the apolipoprotein E ε4 (APOE ε4) allele, a few dozen other genetic loci associated with AD have been identified through genome-wide association studies (GWAS) conducted mainly in individuals of European ancestry. Recently, several GWAS performed in other ethnic groups have shown the importance of replicating studies that identify previously established risk loci and searching for novel risk loci. APOE-stratified GWAS have yielded novel AD risk loci that might be masked by, or be dependent on, APOE alleles. We performed whole-genome sequencing (WGS) on DNA from blood samples of 331 AD patients and 169 elderly controls of Korean ethnicity who were APOE ε4 carriers. Based on WGS data, we designed a customized AD chip (cAD chip) for further analysis on an independent set of 543 AD patients and 894 elderly controls of the same ethnicity, regardless of their APOE ε4 allele status. Combined analysis of WGS and cAD chip data revealed that SNPs rs1890078 (P = 6.64E-07) and rs12594991 (P = 2.03E-07) in SORCS1 and CHD2 genes, respectively, are novel genetic variants among APOE ε4 carriers in the Korean population. In addition, nine possible novel variants that were rare in individuals of European ancestry but common in East Asia were identified. This study demonstrates that APOE-stratified analysis is important for understanding the genetic background of AD in different populations.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Aged , Alleles , Alzheimer Disease/genetics , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Genome-Wide Association Study , Genotype , Humans
6.
Ann Lab Med ; 36(5): 469-74, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27374713

ABSTRACT

BACKGROUND: The incidence and etiology of hepatocellular carcinoma (HCC) vary widely according to race and geographic regions. The insertional mutagenesis of adeno-associated virus 2 (AAV2) has recently been considered a new viral etiology of HCC. The aim of this study was to investigate the frequency and clinical characteristics of AAV2 in Korean patients with HCC. METHODS: A total of 289 unrelated Korean patients with HCC, including 159 Hepatitis-B-related cases, 16 Hepatitis-C-related cases, and 114 viral serology-negative cases, who underwent surgery at the Samsung Medical Center in Korea from 2009 to 2014 were enrolled in this study. The presence of AAV2 in fresh-frozen tumor tissues was investigated by DNA PCR and Sanger sequencing. The clinical and pathological characteristics of AAV2-associated HCC in these patients were compared with previous findings in French patients. RESULTS: The AAV2 detection rate in Korean patients (2/289) was very low compared with that in French patients (11/193). Similar to the French patients, the Korean patients with AAV2-related HCC showed no signs of liver cirrhosis. The Korean patients were younger than the French patients with the same AAV2-associated HCC; the ages at diagnosis of the two Korean patients were 47 and 39 yr, while the median age of the 11 French patients was 55 yr (range 43-90 yr). CONCLUSIONS: AAV2-associated HCC was very rare in Korean patients with HCC. Despite a limited number of cases, this study is the first to report the clinical characteristics of Korean patients with AAV2-associated HCC. These findings suggest epidemiologic differences in viral hepatocarcinogenesis between Korean and European patients.


Subject(s)
Carcinoma, Hepatocellular/pathology , Dependovirus/genetics , Liver Neoplasms/pathology , Adult , Asian People , Capsid Proteins/genetics , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/virology , DNA, Viral/chemistry , DNA, Viral/genetics , DNA, Viral/metabolism , DNA-Binding Proteins/genetics , Dependovirus/isolation & purification , Dependovirus/pathogenicity , Female , Humans , Incidence , Inverted Repeat Sequences/genetics , Liver Neoplasms/etiology , Liver Neoplasms/virology , Male , Middle Aged , Parvoviridae Infections/complications , Parvoviridae Infections/epidemiology , Polymerase Chain Reaction , Republic of Korea , Sequence Analysis, DNA , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL